Skip to main content

Advertisement

Log in

Estimating the radon concentration in water and indoor air

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 ±7.7, and 462 ±422 Bq m−3 respectively. These values lead to average effective dose equivalent rates of 1.3 ±0.4 and 23 ±21 mSv year−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker III, A. P., & Lachajczyk, T. M. (1984). Evaluation of waterborne radon impact on indoor air quality and assessment of control options. EPA-600/7¬84-093. St. Louis: Envirodyne Engineers.

    Google Scholar 

  • CEC (1990). Recommendation de la Commission Relative a la Protection de la Population Contre les Dangers Resultant de l’Exposition au Radon a l’Interieur des Batiments. Brussels: CEC.

    Google Scholar 

  • Cothern, C. R. (1987). Estimating the health risks of radon in drinking water. J. Am. Water Works, 79(4), 153–158.

    CAS  Google Scholar 

  • Crawford-Brown, D. J. (1989). The biokinetics and dosimetry of radon-222 in the human body following ingestion of groundwater. Environmental Geochemistry and Health, 11, 10.

    Article  CAS  Google Scholar 

  • Crawford-Brown, D. J. (1991). Cancer fatalities from waterborne radon (Rn-222). Risk Analysis, 11(1), 135.

    Article  CAS  Google Scholar 

  • EC (European Commission Recommendation) (2001). On the protection of the public against exposure to radon in drinking water supplies. Official Journal of the European Communities, L344, 85–88.

    Google Scholar 

  • EPA (US Environmental Protection Agency) (1988). Radon reduction techniques for detached houses: Technical guidance. 520/5-85-008, USEPA/625/5-87/019. Washington, D.C: US EPA.

    Google Scholar 

  • EPA (US Environmental Protection Agency) (1991). National primary drinking water regulations; radionuclides; proposed rules. Federal Register, 56(138), 33050.

    Google Scholar 

  • EPA (US Environmental Protection Agency) (1999). Drinking water and health; what you need to know; EPA816-K-99-001. Washington, D.C: US EPA.

    Google Scholar 

  • Erees, F. S., Aytas, S., Sac, M. M., Yener, G., & Salk, M. (2007). Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey. Radiation Measurements, 42(1), 80–86.

    Article  CAS  Google Scholar 

  • Grasty, R. (1994). Summer outdoor radon variations in Canada and their relation to soil moisture. Health Physics, 66(2), 185.

    Article  CAS  Google Scholar 

  • Gosink, T. A., Baskaran, M., & Holleman, D. F. (1990). Radon in the human body from drinking water. Health Physics, 59(6), 919.

    Article  CAS  Google Scholar 

  • Hess, C. T., Michel, J., Horton, T. R., Prichard, H. M., & Conglio, W. A. (1985). The occurrence of radioactivity in public water supplies in the United States. Health Physics, 48(5), 553.

    Article  CAS  Google Scholar 

  • Hopke, P. K., Borak, T. B., Doull, J., Cleaver, J. E., Eckerman, K. F., Gundersen, C. S., et al. (2000). Health risks due to radon in drinking water. Environmetal Science Technology, 34(6), 921–926.

    Article  CAS  Google Scholar 

  • Isam Salih, M. M., Pettersson, H. B. L., & Lund, E. (2002). Uranium and thorium series radionuclides in drinking water from drilled bedrock wells: correlation to geology and bedrock radioactivity and dose estimation. Radiation Protection Dosimetry, 102(3), 249–258.

    CAS  Google Scholar 

  • Kasprak, J. (2006). Radon in drinking water, OLR research report, 2006-R-0655. Hartford: OLR.

    Google Scholar 

  • King, P. T., Michel, J., & Moore, W. S. (1982). Ground water geochemistry of 228Ra, 226Ra and 222Rn. Geochimica et Cosmochima Acta, 46, 1173.

    Article  CAS  Google Scholar 

  • Krishnaswami, S., Graustein, W. C., Turekian, K. K., & Dowd, J. F. (1982). Radium, thorium and radioactive lead isotopes in ground waters: application to the in-situ determination of adsorption–desorption rate constants and retardation factors. Water Resources Research, 18, 1633.

    Article  Google Scholar 

  • Maged, A. F. (2006). Radon concentrations in elementary schools in Kuwait. Health Physics, 90(3), 258–262.

    Article  CAS  Google Scholar 

  • Maged, A. F., & Ashraf, F. A. (2005). Radon exhalation rate of some building materials used in Egypt. Environmental Geochemistry and Health, 27, 485–489.

    Article  CAS  Google Scholar 

  • Maged, A. F., & Saad, E. A. (1998). Radon exhalation rate from some fertilizers, clay and potatoes in Egypt. An International Journal of Environmental Management and Health, 9, 130–135.

    Google Scholar 

  • Maged, A. F., Tsuruta, T., & Durrani, S. A. (1993). Experimental and theoretical considerations on the calibration factor K between α-activity concentration and track density for application in radon dosimetry. Journal of Radioanalytical Nuclear Chemistry Articles, 170, 423–431.

    Article  CAS  Google Scholar 

  • McBride, J. L., & Davies, K. L. (1981). Natural radioactivity measurements for the Harvey area, York County, N.B. Radiation Protection Services. Fredericton: New Brunswick Department of Health.

    Google Scholar 

  • McGregor, R. G., & Gourgon, L. A. (1980). Radon and radon daughters in homes utilizing deep well water supplies, Halifax County, Nova Scotia. J. Environ. Sci. Eng., 15(1), 25.

    Google Scholar 

  • McKittrick, L., Sequeira, S., Ryan, T., & Colgan, T. (2003). Radon in drinking water in county Wicklow—a pilot study. Diffuse Pollution Conference 8B Ecology, 831–34.

    Google Scholar 

  • NCRP (National Council on Radiation Protection and Measurements) (1988). Measurement of radon and radon daughters in air. NCRP Report No. 97. Bethesda: NCRP.

    Google Scholar 

  • NRPB (National Radiological Protection Board) (1998). Results of the 1997 European Commission Intercomparison of Passive Radon Detectors. EUR 18035 EN. Oxfordshire: NRPB.

    Google Scholar 

  • Nazaroff, W. W., Doyle, S. M., Nero, A. V., & Sexton, R. G. (1987). Potable water as a source of airborne 222Rn in U.S. dwellings: a review and assessment. Health Physics, 52, 281.

    Article  CAS  Google Scholar 

  • Ramola, R. C., Choubey, V. M., Saini, N. K., & Bartarya, S. K. (1999). Occurrence of radon in drinking water of Dehradum City, India. Indoor and Built Environment, 8(1), 67–70.

    CAS  Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (1988). Sources, effects and risks of ionizing radiation. Report to the General Assembly, with annexes. United Nations. New York: UNSCEAR.

    Google Scholar 

  • WHO (World Health Organization) (1993). Guidelines for drinking water quality (vol. 1, 2nd ed.). Geneva: WHO Recommendations.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Maged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maged, A.F. Estimating the radon concentration in water and indoor air. Environ Monit Assess 152, 195–201 (2009). https://doi.org/10.1007/s10661-008-0307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0307-5

Keywords

Navigation