Skip to main content

Advertisement

Log in

An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive account regarding concentration, distribution and possible sources of trace elements (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in 20–30 cm sediment cores (<63 μm particle size) collected at the confluence of the Ganges River and Bay of Bengal (Sunderban wetland, India). This work aims to evaluate the fluvio-marine and geochemical processes influencing the metal distribution. The most interesting features are the downward increase of concentrations of majority of the elements reaching overall maximum values at a depth of 10–15 cm observed in station Lot No.8 located along the main stream of the Ganges estuary as well as an overall elevated concentration of all the elements in the lower littoral zone. The interelemental relationship revealed the identical behaviour of elements during its transport in the estuarine environment. The overall variation in concentration can be attributed to differential discharge of effluents originating from industrial and agricultural as well as from domestic sewage. Arsenic exceeded effects range — low (ER — L) concentrations, implying occasional or frequent adverse biological effects. For Cu, Ni and Cr a smaller proportion of samples had exceeded the ER — L values indicating that the dataset would be suitable for future use in evaluating predictive abilities of SQGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, N., & Subramanian, V. (1984). Erosion and sediment transport in the Ganges river basin (India). Journal of Hydrology, 69, 173–182.

    Article  CAS  Google Scholar 

  • Abu-Hilal, A. H., & Badran, M. M. (1990). Effect of pollution sources on metal concentration in sediment cores from the Gulf of Aqaba (Red Sea). Marine Pollution Bulletin, 21(4), 190–197.

    Article  CAS  Google Scholar 

  • Adams, W. J., Kimerle, R. A., & Barnett, R. A., Jr. (1992). Sediment quality and aquatic life assessment. Environmental Science and Technology, 26, 1865–1875.

    Google Scholar 

  • Adriano, D. C. (1986). Trace elements in terrestrial environments. New York: Springer-Verlag.

    Google Scholar 

  • Alagarsamy, R. (2006). Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Estuarine, Coastal and Shelf Science, 67, 333–339.

    Article  CAS  Google Scholar 

  • Alongi, D. M. (1996). The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. Journal of Marine Research, 54, 123–148.

    Article  CAS  Google Scholar 

  • Batley, G. E., & Brockbank, C. I. (1990). Impact of ocean disposal of dredged sediments from the RTA Glebe Island bridge site — A coastal sediment survey. CSIRO report, Center for Advanced Analytical Chemistry, Division of Coal and Energy Technology, Report FT/IR 050.

  • Bhattacharya, A., & Das, G. K. (2002). Dynamic geomorphic environment of Indian Sunderbans. In S. P. Basu (Ed.) Changing environmental scenario of the Indian subcontinent (pp. 284–298). Kolkata: Acb Publication.

    Google Scholar 

  • Biksham, G., & Subramanian, V. (1988). Elemental composition of Godavari sediments (Central and Southern Indian Subcontinent). Chemical Geology, 70, 275–286.

    Article  CAS  Google Scholar 

  • Bouillon, S., Mohan, P. C., Sreenivas, N., & Dehairs, F. (2000). Sources of suspended organic matter and selective feeding by ooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series, 208, 70–92.

    Article  Google Scholar 

  • Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76, 89–131.

    Article  CAS  Google Scholar 

  • Burton Jr., G. A., & Scott, K. J. (1992). Sediment toxicity evaluation, their niche in ecological assessment. Environmental Science and Technology, 26, 2068–2075.

    Article  CAS  Google Scholar 

  • Caccia, V. G., Millero, F. J., & Palangues, A. (2003). The distribution of trace metals in Florida Bay sediments. Marine Pollution Bulletien, 46, 1420–1433.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K.K., et al. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.

    Article  CAS  Google Scholar 

  • Clark, R. B. (2001). Marine pollution p. 237. Oxford: Oxford University Press.

    Google Scholar 

  • Clark, C. S., Rampla, K. G., Thuppil, V., Chen, C. K., Clark, R., & Roda, S. (2006). The lead content of currently available new residential paint in several Asian countries. Environmental Research, 102(1), 9–12.

    Article  CAS  Google Scholar 

  • Cornwell, J. C., Conley, D. J., Owens, M., & Stevenson, J. C. (1996). Sediment chronology of the eutrophication of Chesapeake Bay. Estuaries, 19, 488–499.

    Article  CAS  Google Scholar 

  • Daoust, R. J., Moore, T. R., Chmura, G. L., & Magenheimer, J. F. (1996). Chemical evidence and anthropogenic influences in a Bay of Fundy salt-marsh. Journal of Coastal Research, 12, 520–532.

    Google Scholar 

  • Decov, V. M., Subramanian, V., & Van Grieken, R. (1999). Chemical composition of riverine suspended matter and sediments from the Indian sub-continent. In V. Ittekot, V. Subramanian, & S. Annadurai (Eds.) Biogeochemistry of rivers in tropical South and Southeast Asia. Heft 82. SCOPE Sonderband (pp. 99–109). Hamburg: Mitteilugen aus dem Geologisch-Paläontolgischen Institut der Universität.

    Google Scholar 

  • Dominik, J., & Stanley, D. J. (1993). Boron, beryllium and sulfur in Holocene sediments and peats of the Nile delta, Egypt: their use as indicators of salinity and climate. Chemical Geology, 104, 203–216.

    Article  CAS  Google Scholar 

  • Dyer, K. R. (1986). Coastal and estuarine sediment dynamics p. 342. New York: John Wiley and Sons.

    Google Scholar 

  • El-Sayed, M. K. (1982). Effect of sewage effluent on the sediment of Nordasvatnet (a land-locked fjord), Norway. Marine Pollution Bulletin, 13, 85–88.

    Article  CAS  Google Scholar 

  • Folk, R. L., & Ward, W. C. (1957). Brazos River bar, a study of the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.

    Google Scholar 

  • Forstner, U. (1983). Assessment of metal pollution in rivers and estuaries. In I. Thomton (Ed.) Applied environmental geochemistry (pp. 395–423). London: Academic.

    Google Scholar 

  • Gonneea, M. E., Paytan, A., & Herrera-Silveira, J. A. (2004). Estuarine, Coastal and Shelf Science, 61, 211–227.

    Article  CAS  Google Scholar 

  • Huntzicker, J. J., Friedlander, S. K., & Davidson, C. I. (1975). Material balance for automobile-emitted lead in Los Angels Basin. Environmental Science & Technology, 9, 448–457.

    Article  CAS  Google Scholar 

  • Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., Armstron-Altrin, J. S., Mohan, S. P., & Ram-Mohan, V. (2007). Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environmental Pollution, 145(1), 245–257.

    Article  CAS  Google Scholar 

  • Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89, 23–30.

    Article  CAS  Google Scholar 

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from Tees Estuary, northeast England. Marine Pollution Bulletin, 34, 768–779.

    Article  CAS  Google Scholar 

  • Jung, H. J., Lee, C. B., Cho, Y. G., & Kong, J.-K. (1996). A mechanism for the enrichment of Cu and depletion of Mn in anoxic marine sediments, Banweol intertidal flat, Korea. Marine Pollution Bulletin, 32(11), 782–787.

    Article  CAS  Google Scholar 

  • Kotmire, S. Y., & Bhosale, L. J. (1979). Some aspects of chemical composition of mangrove leaves and sediments. Mahasagar, Bulletin of the National Institute of Oceanography, 12, 149–151.

    CAS  Google Scholar 

  • Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrology p. 549. New York: Plenum.

    Google Scholar 

  • Lacerda, L. D., & Abrao, J. J. (1984). Heavy metals accumulation by mangrove and salt marsh intertidal sediments. Revista Brasileira de Botanica, 7, 49–52.

    Google Scholar 

  • Lakshumanan, C. (2001). Modeling organic carbon deposition, degradation and preservation in sediments of Pichavaram mangrove wetlands, southeast coast of India. PhD thesis, Anna University, Chennai, India, 188 pp.

  • Lee, S. Y. (1995). Mangrove outwelling: a review. Hydrobiologia, 295, 203–212.

    Article  Google Scholar 

  • Liao, J. F. (1990). The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. The Acta Scientiarum Naturalium Universities Sunyatseni (Supplement), 9(4), 67–72.

    Google Scholar 

  • Marín, V., & Olivares, G. (1999). Estacionalidad de la productividad primaria en bahía Mejillones del Sur (Chile): Una aproximación proceso-functional. Revista Chilena de Historia Natural, 72, 629–641.

    Google Scholar 

  • Monbet, P. (2006). Mass balance of lead through a small macrotidal estuary: the Morlaix River estuary (Brittany, France). Marine Chemistry, 98, 59–80.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Schermetalle in den sedimenten des Rheins-Veran-derungen seitt, 1971. Umschan, 79, 778–783.

    Google Scholar 

  • Nohara, M., & Yokoto, S. (1978). The geochemistry of trace elements in pelagic sediments from the central Pacific basin. Journal of the Geological Society of Japan, 84(4), 165–175.

    CAS  Google Scholar 

  • Nolting, R. F., Ramkema, A., & Everaarts, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of Banc d’ Arquin (Mauritani). Continental Shelf Research, 19, 665–691.

    Article  Google Scholar 

  • Pantalu, V. R. (1966). Contribution to the study of biology and fishery of some estuarine fishes. Ph. D thesis, Calcutta University.

  • Pereira, M. E., Duarte, A. C., Millward, G. E., Abrue, S. N., & Vale, C. (1998). An estimation of industrial mercury stored in sediments of a combined area of the lagoon of Aveiro (Portugal). Water Science and Technology, 37(6/7), 125–130.

    Article  CAS  Google Scholar 

  • Periakali, P., Eswaramoorthi, S., Subramanian, S., & Jaisankar, P. (2000). Geochemistry of Pichavaram mangrove sediments, southeast coast of India. Journal of the Geological Society of India, 55, 387–394.

    CAS  Google Scholar 

  • Ramanathan, A. L. (1997). Sediment characteristics of the Pichavaram mangrove environment, southeast coast of India. Indian Journal of Marine Sciences, 26, 319–322.

    Google Scholar 

  • Ramanathan, A. L., Subramanian, V., Ramesh, R., Chidambaram, S., & James, A. (1997). Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), southeast coast of India. Environmental Geology, 37(3), 223–233.

    Article  Google Scholar 

  • Ramanathan, A. L., Vaithiyanathan, P., Subramanian, V., & Das, B. K. (1993). Geochemistry of the Cauvery estuary, East Coast of India. Estuaries, 16, 459–474.

    Article  CAS  Google Scholar 

  • Ramesh, R., Subramanian, V., & Van Grieken, R. (1990). Heavy metal distribution in sediments of Krishna river basin, India. Environmental Geology and Water Sciences, 15, 207–216.

    Article  CAS  Google Scholar 

  • Ray, A. K., Tripathy, S. C., Patra, S., & Sarma, V. V. (2006). Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environment International, 32(2), 219–223.

    Article  CAS  Google Scholar 

  • Rodriguez, L., Marin, V., Farias, M., & Oyarce, E. (1991). Identification of an upwelling zone by remote sensing and in situ measurement. Mejillones del Sur Bay (Antofagasta, Chile). Scientia Marina, 55(3), 467–473.

    Google Scholar 

  • Ruiz-Fernández, A. C., Páez-Osuna, F., Hillarie-Marcel, C., Soto-Jiménez, M., & Ghaleb, B. (2001). Principal component analysis applied to assessment of metal pollution from urban wastes in the Culiacan River estuary. Bulletin of Environmental Contamination and Toxicology, 67, 741–748.

    Article  Google Scholar 

  • Saha, M., Sarkar, S. K., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sundarban mangrove wetland, northeast India. Environment International, 32, 203–207.

    Article  CAS  Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin: Springer-Verlag.

    Google Scholar 

  • Salomons, W., Kerdlik, H., van Pagee, H., Klomp, R., & Schreur, A. (1988). Behaviour and impact assessment of heavy metals in estuary and coastal zone. In U. Seeliger, L. D. de Lacerda, & S. R. Patchineelam (Eds.) Metals in coastal environments of Latin America (pp. 159–198). New York: Springer-Verlag.

    Google Scholar 

  • Santschi, P. H., Hohener, P., Benoil, G., & Bucholtz-ten Brink, M. (1990). Chemical processes at the sediment–water interface. Marine Chemistry, 30, 269–315.

    Article  CAS  Google Scholar 

  • Sarangi, R. K., Kathiresan, K., & Subramanian, A. N. (2002). Metal concentrations in five mangrove species of the Bhitarkanika, Orissa, east coast of India. Indian Journal of Marine Sciences, 31(3), 251–253.

    CAS  Google Scholar 

  • Sarkar, S. K., Bhattacharya, B., & Das, R. (2003). Seasonal variations and inherent variability of selenium in marine biota of a tropical wetland ecosystem: Implications for bioindicator species.. Ecological Indicators, 2(4), 367–375.

    Article  CAS  Google Scholar 

  • Sarkar, S. K., Bhattacharya, B., Debnath, S., Bandopadhaya, G., & Giri, S. (2002). Heavy metals in biota from Sunderban wetland ecosystem, India: implications to monitoring the environmental assessment. Aquatic Ecosystem Health & Management, 5(2), 207–214.

    Google Scholar 

  • Sarkar, S. K., Franciscovic-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environment International, 30, 1089–1098.

    Article  Google Scholar 

  • Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal for Cleaner Production, 15(16), 1459–1467.

    Google Scholar 

  • Shaw, T. J., Gieskes, J. M., & Jahnke, R. A. (1990). Early digenesis in differing depositionsl environments. The response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54, 1233–1246.

    Article  CAS  Google Scholar 

  • Silva-Filho, E. V., Wasserman, J. C., & Lacerda, L. D. (1998). History of metal inputs recorded on sediment cores from a remote environment. Ciencia y Cultura, 50(5), 374–376.

    Google Scholar 

  • Stull, J. K., Baird, R. B., & Heesen, T. C. (1986). Marine sediment core profiles of trace constituents offshore of a deep waste-water outfall. Journal of the Water Pollution Control Federation, 58, 985–991.

    CAS  Google Scholar 

  • Subramanian, V., Jha, P. K., & Van Grieken, R. (1988). Heavy metals in the Ganges estuary. Marine Pollution Bulletin, 19, 290–293.

    Article  CAS  Google Scholar 

  • Szefer, P., Kusak, A., Szefer, K., Glasby, G. P., Jankowska, H., Wolowicz, M., et al. (1998). Evaluation of anthropogenic influx of metallic pollutants into Puck Bay, Southern Baltic. Applied Geochemistry, 13, 293–304.

    Article  CAS  Google Scholar 

  • Szefer, P., & Skwarzec, B. (1988). Distribution and possible sources of some elements in the sediment cores of the southern Baltic. Marine Chemistry, 23, 109–129.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (1993). Retention of nutrients and heavy metals in mangrove sediments receiving wastewater of different strengths. Environmental Technology, 14, 719–729.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (1995). Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environmental Pollution, 94, 283–291.

    Article  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205.

    Article  CAS  Google Scholar 

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Helgoländer Meeresuntersuchungen, 33, 566.

    Article  Google Scholar 

  • Turkian, K. K., & Wedephol, K. H. (1961). Distribution of the elements in some major units of the earth crust. Bulletin of the Geological Society of America, 72, 175–192.

    Article  Google Scholar 

  • UNEP (United Nations Environment Programme). (1985). GESAMP: Cadmium, lead and tin in marine environment. United Nations Environment Programme: Regional Seas Reports and Studies No. 56, 90 pp.

  • Valette-Silver, H. J. (1993). The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries, 16(3B), 577–588.

    Article  CAS  Google Scholar 

  • Valiela, I., & Cole, M. L. (2002). Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems, 5, 92–102.

    Article  Google Scholar 

  • Volkman, J. K., Rohjans, J., Rullkotter, J., Scholz-Bottcher, B. M., & Liebezeit, G. (2000). Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea. Continental Shelf Research1139–1158.

  • Waldichuk, M. (1985). Biological availability of metals to marine organisms. Marine Pollution Bulletin, 16, 7–11.

    Article  Google Scholar 

  • Walkey, A., & Black, T. A. (1934). An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Science, 37, 23–38.

    Google Scholar 

  • Wang, C. K., Chu, K. H., Chen, Q. C., & Ma, X. I. (1995). Environmental research in pearl river and coastal areas. Guangzhou, China: Guangdang Higher Education Press.

    Google Scholar 

  • Winkles, H. J., Vink, J. P. M., & Beurskens, J. E. M. (1993). Distribution and geochronology of priority pollutants in a large sedimentation area, River Rhine, the Netherlands. Applied Geochemistry, 52, 95–101.

    Article  Google Scholar 

  • Yim, M. W., & Tam, N. F. Y. (1999). Effects of waste-water borne heavy metals on mangrove plants and soil microbial activities. Marine Pollution Bulletin, 39, 176–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, M., Massolo, S., Sarkar, S.K. et al. An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environ Monit Assess 150, 307–322 (2009). https://doi.org/10.1007/s10661-008-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0232-7

Keywords

Navigation