Skip to main content
Log in

A comparative study on various statistical techniques predicting ozone concentrations: implications to environmental management

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of the present work is to compare various techniques for modeling the dependence of the tropospheric ozone concentrations on several meteorological and pollutant parameters. The study focuses on two different sites in the metropolitan area of Athens, Greece; one in the city centre and another one in the suburbs. It is found that although simple Linear Regression Analysis fails to construct accurate equations due to the existence of multicollinearity among the independent variables, still various combinations of a Multivariate Method (PCA) and Stepwise Regression Analysis manage to produce equations free of the multicollinearity issue. The derived formulas are validated and prove to have R 2 values in the order of 0.8 approximately. However, the equations are found to be unsuccessful in case of severe episodes. For this reason, a new procedure is followed for estimating the ozone values in case of episodes exclusively. The new R 2 value is estimated to be 0.9, approximately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal Component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20, 1263–1271.

    Article  Google Scholar 

  • Agirre-Basurko, E., Ibarra-Berastegi, G., & Madariaga, I. (2006). Regression and multilayer perception-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environmental Modelling & Software, 21(4), 430–446.

    Article  Google Scholar 

  • Ambroise, C., & Grandvalet, Y. (2001). Prediction of ozone peaks by mixture models. Ecological Modelling, 145, 275–289.

    Article  CAS  Google Scholar 

  • Asimakopoulos, D., Helmis, C. G., Papadopoulos, K. H., Kalogiros, J. A., Kassomenos, P., & Petrakis, M. (1999). Inland propagation of sea breeze under opposing offshore winds. Meteorology and Atmospheric Physics, 70, 97–110.

    Article  Google Scholar 

  • Balaguer Ballester, E., Camps i Valls, G., Carrasco-Rodriguez, J. L., Soria Olivas, E., & Del Valle-Tascon, S. (2002). Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecological Modelling, 156, 27–41.

    Article  CAS  Google Scholar 

  • Bartzokas, A., & Metaxas, D. A. (1995). Factor Analysis of some climatological elements in Athens, 1931–1992: Covariability and Climatic Change. Theoretical and Applied Climatology, 52, 195–205.

    Article  Google Scholar 

  • Bartzokas, A., Paliatsos, G. A., & Ziomas, I. C. (1997). Variability and covariability of basic air pollutants in Athens. Fresenius Environmental Bulletin, 6, 178–183.

    CAS  Google Scholar 

  • Brauer, M., & Brook, J. R. (1997). Ozone personal exposures and health effects for selected groups residing in the Fraser Valley. Atmospheric Environment, 31, 2113–2121.

    Article  CAS  Google Scholar 

  • Burnett, R. T., Brook, J. R., Yung, W. T., Dales, R. E., & Krewski, D. (1997). Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environmental Research, 72, 24–31.

    Article  CAS  Google Scholar 

  • Chaloulakou, A., Saisana, M., & Spyrellis, N. (2003). Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. The Science of the Total Environment, 313, 1–13.

    Article  CAS  Google Scholar 

  • Flaum, J. B., Rao, S. T., & Zubenko, L. G. (1996). Moderating the influence of meteorological conditions on ambient ozone concentrations. Journal of the Air and Waste Management Association, 46, 35–46.

    CAS  Google Scholar 

  • European Parliament and the Council (2002). Guidance for implementing directive related to ozone in ambient air 2002/3/EC.

  • Helmis, C. G., Asimakopoulos, D. N., Papadopoulos, K. H., Kassomenos, P., Kalogiros, J. A., Papageorgas, P. G., et al. (1997). Air mass exchange between the Athens Basin and the Messogia Plain of Attica, Greece. Atmospheric Environment, 31, 3833–3849.

    Article  CAS  Google Scholar 

  • Jolliffe, I. T. (1986). Principal component analysis (p. 271). New York: Springer.

    Google Scholar 

  • Kallos, G., Kassomenos, P., & Pielke, R. A. (1993). Synoptic and mesoscale weather conditions during air pollution episodes in Athens, Greece. Boundary Layer Meteorology, 62, 163–184.

    Article  Google Scholar 

  • Kallos, G., Papadopoulos, A., Varinou, M., & Kassomenos, P. (1995). Estimation of the contribution to air quality degradation in Athens from major elevated sources. International Journal of Environment and Pollution, 5, 611–622.

    CAS  Google Scholar 

  • Kambezidis, H., Kassomenos, P., & Kiriaki, H. (1986). Smoke concentration levels in a monitoring network in Athens, Greece. Atmospheric Environment, 20, 601–604.

    Article  Google Scholar 

  • Kassomenos, P. A., & Koletsis, I. G. (2005). Seasonal variation of the temperature inversions over Athens, Greece. International Journal of Climatology, 25(12), 1651–1663.

    Article  Google Scholar 

  • Kassomenos, P., Lykoudis, S., & Petrakis, M. (1997). On the behaviour of air pollutants released from elevated stacks in the vicinity of Athens, Greece. International Journal of Environment and Pollution, 8, 134–147.

    CAS  Google Scholar 

  • Kassomenos, P., Petrakis, M., Lykoudis, S., & Papadopoulos, A. (1996). Mesoscale transport of air pollutants over Athens: Implications for air quality. International Journal of Environment and Pollution, 6, 214–224.

    CAS  Google Scholar 

  • Kassomenos, P., Skouloudis, A. N., Lykoudis, H. S., & Flocas, H. A. (1999). “Air Quality Indicators” for Uniform Indexing of Atmospheric Pollution in Large Metropolitan Areas. Atmospheric Environment, 33, 1861–1879.

    Article  CAS  Google Scholar 

  • Katsoulis, B., & Kassomenos, P. (2004). Assessment of the air-quality over Urban areas by means of biometeorological indices, The case of Athens, Greece. Environmental Technology, 25, 1293–1304.

    Article  CAS  Google Scholar 

  • Melas, D., Kioutsioukis, I., & Ziomas, I. (2000). Neural network model for predicting peak photochemical pollutant levels. Journal of the Air and Waste Management Association, 50, 495–501.

    CAS  Google Scholar 

  • Paschalidou, A. K., & Kassomenos, P. A. (2004). Comparison of air pollutant concentrations between weekdays and weekends in Athens, Greece for various meteorological conditions. Environmental Technology, 25, 1241–1255.

    Article  CAS  Google Scholar 

  • Pilinis, C., Kassomenos, P., & Kallos, G. (1993). Modelling of photochemical pollution in Athens, Greece: Application of the RAMS-CALGRID modelling system. Atmospheric Environment, 27B, 353–370.

    CAS  Google Scholar 

  • Sindosi, O. A., Katsoulis, B. D., & Bartzokas, A. (2003). An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels. Environmental Technology, 24, 947–962.

    Article  CAS  Google Scholar 

  • Smith-Doron, M., Stieb, D., Raizenne, M., Brook, J., Dales, R., Leech, J., et al. (2000). Association between ozone and hospitalisation for acute respiratory diseases in children less than 2 years of age. American Journal of Epidemiology, 153, 444–452.

    Google Scholar 

  • Soja, G., & Soja, A. M. (1999). Ozone indices based on simple meteorological parameters: potential and limitations of regression and neural network models. Atmospheric Environment, 33, 4229–4307.

    Article  Google Scholar 

  • Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software, 22(1), 97–103.

    Article  Google Scholar 

  • SPSS Base 7.5 for Windows (1997). User’s guide, SPSS Inc, ISBN 0-13-657214-6, Chicago IL, USA, 628 pp.

  • Statheropoulos, M., Vassiliadis, N., & Pappa, A. (1998). Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmospheric Environment, 32, 1087–1095.

    Article  CAS  Google Scholar 

  • Thompson, M. L., Reynolds, J., Cox, L. H., Guttorp, P., & Sampson, P. D. (2001). A review on statistical methods for the meteorological adjustment of tropospheric ozone. Atmospheric Environment, 35, 617–630.

    Article  Google Scholar 

  • Vukovich, F. M., & Sherwell, J. (2003). An examination of the relationship between certain meteorological parameters and surface ozone variations in the Baltimore—Washington corridor. Atmospheric Environment, 37, 971–981.

    Article  CAS  Google Scholar 

  • Wilks, D. S. (1995). Statistical methods in the atmospheric sciences. An Introduction. International Geophysics Series, v.59, San Diego, p. 467.

  • Wise, E. K., & Comrie, A. C. (2005). Meteorologically adjusted urban air quality trends in the Southwestern United States. Atmospheric Environment, 39, 2969–2980.

    Article  CAS  Google Scholar 

  • Yi, J., & Pybutok, R. (1996). A neural network model forecasting for prediction of daily maximum ozone concentrations in an industrialized urban area. Environmental Pollution, 92, 349–357.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Kassomenos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschalidou, A.K., Kassomenos, P.A. & Bartzokas, A. A comparative study on various statistical techniques predicting ozone concentrations: implications to environmental management. Environ Monit Assess 148, 277–289 (2009). https://doi.org/10.1007/s10661-008-0158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0158-0

Keywords

Navigation