Skip to main content
Log in

Emission of isoprene from common Indian plant species and its implications for regional air quality

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Isoprene is most dominant volatile organic compounds (VOC) emitted by many plants. In this study 40 common Indian plant species were examined for isoprene emission using dynamic flow through enclosure chamber technique. Isoprene emission rates of plants species were found to vary from undetectable to 69.5 μg g−1 h−1 (Madhuca latifolia). Besides, an attempt has been made to evaluate suitability of 80 common Indian plant species for planting programmes. Out of 80 species, 29 species were moderate to high emitters (10 to ≤25 μg g−1 h−1), 12 species were low emitter emitters (1 to ≤10 μg g−1 h−1) and remaining 39 species were found to be negligible or non emitters (<1 μg g−1 h−1) of isoprene. About 50% plant species selected for planting programmes in India were found to be moderate to high emitters of isoprene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anon (1999). National forestry action programme. New Delhi: Ministry of Environment and Forest.

    Google Scholar 

  • Benjamin, M. T., Sudol, M., Bloch, L., & Winer, A. M. (1996). Low emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rate. Atmospheric Environment, 30, 1437–1452.

    Article  CAS  Google Scholar 

  • Brasseur, G. P., & Chatfield, R. B. (1991). The fate of biogenic trace gases in the atmosphere. In T. D. Sharkey, E. A. Holland, & H. A. Mooney (Eds.), Trace gas emission from plants (pp. 1–27). San Diego: Academic.

    Google Scholar 

  • Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., et al. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research, 97, 6037–6055.

    CAS  Google Scholar 

  • Cronn, D. R., & Nutmagul, W. (1992). Analysis of atmospheric hydrocarbons during winter. Tellus, 192(34), 159–165.

    Google Scholar 

  • CSE. (2004). Rising NO 2 levels in Indian cities 2004. Tuglakabad, New Delhi: Centre for Science and Environment.

    Google Scholar 

  • Evans, R., Tingey, D., Gumpertz, M., & Burns, W. (1982). Estimates of isoprene and monoterpines emission rates in plants. Botanical Gazette, 143, 304–310.

    CAS  Google Scholar 

  • GDAP. (2005). Greening Delhi action plan 2005–2006. Government of NCT of Delhi, India.

  • Geron, C., Owen, S, Guenther, A., Greenberg, J., Rasmussen, R., Bai, J., et al. (2006). Volatile organic compounds from vegetation in Yunnan province China: Emission rates and some potential regional implications. Atmospheric Environment, 40, 1759–1773.

    Article  CAS  Google Scholar 

  • Guenther, A. (1997). Seasonal and spatial variations in natural volatile organic compounds emissions. Ecological Application, 7(1), 34–45.

    Article  Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., et al. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100, 8873–8892.

    Article  CAS  Google Scholar 

  • Guenther, A., Zimmerman, P., Harley, P., Monson, R., & Fall, R. (1993). Isoprene and monoterpene emission rate variability: Model evaluation and sensitivity analysis. Journal of Geophysical Research, 98, 12609–12617.

    Article  Google Scholar 

  • Harley, P., Guenther, A., & Greenberg, J. (2003). Micrometeorological and leaf level measurements of isoprene emission from a South African savanna. Journal of Geophysical Research, 108(D13), 4–10.

    Article  CAS  Google Scholar 

  • Harley, P., Litvak, M., Sharkey, T., & Monson, R. (1994). Isoprene emission from Velvet bean leaves: interactions among nitrogen availability, growth photon flux density, and leaf development. Plant Physiology, 105, 279–285.

    CAS  Google Scholar 

  • Hewitt, C. N., Monson, R. K., & Fall, R. (1990). Isoprene emission from the grass Arundo donax are not linked to photorespiration. Plant Science, 66, 139–144.

    Article  CAS  Google Scholar 

  • Jacob, D. J., & Wofsy, S. C. (1988). Photochemistry of biogenic emissions over the Amazon forest. Journal of Geophysical Research, 93, 1477–1486.

    Article  CAS  Google Scholar 

  • Karlik, J. F., & Winer, A. M. (2001). Measured isoprene emission rates of plants in California landscapes: Comparison to estimates from taxonomic relationships. Atmospheric Environment, 35, 1123–1131.

    Article  CAS  Google Scholar 

  • Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds: An overview of emission physiology and ecology. Journal of Atmospheric Chemistry, 33, 23–88.

    Article  CAS  Google Scholar 

  • Khalil, M. A., & Rasmussen, R. A. (1992). Forest hydrocarbons emission: Relationships between fluxes and ambient concentrations. Journal of Air Waste Manage Association, 42, 810–813.

    CAS  Google Scholar 

  • Klinger, L., Li, Q., Guenther, A., Greenberg, J., Baker, & Bai, J. (2002). Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research, 107(D21), 4603, doi:10029/2001JD001076.

  • Monson, R. K., Harley, P. C., Litvak, M. E., Wildermuth, M., Guenther, A., Zimmerman, P. R., et al. (1994). Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia, 99, 260–270.

    Article  Google Scholar 

  • National Forest Policy. (1988). National forestry action programme in India. Government of India: Ministry of Environment and Forest.

  • Padhy, P. K., & Varshney, C. K. (2005). Isoprene emission from tropical tree species. Environmental Pollution, 135, 101–109.

    Article  CAS  Google Scholar 

  • Poisson, N., Kanakidou, M., & Crutzen, P. J. (2000). Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidising power of the global atmosphere: 3 dimensional modeling results. Journal of Atmospheric Chemistry, 36, 157–230.

    Article  CAS  Google Scholar 

  • Rasmussen, R. A. (1972). What do hydrocarbons from trees contribute to air pollution. Journal of Air Waste Manage Association, 22, 537–542.

    CAS  Google Scholar 

  • SFR. (2005). State of Forest Report. Forest survey of India. Government of India: Ministry of environment and forest.

  • Singh, A., Sarin, S., Shanmugam, P., Attri, A. K., & Jain, V. K. (1997). Ozone distribution in urban environment of Delhi during winter months. Atmospheric Environment, 31, 3421–3427.

    Article  CAS  Google Scholar 

  • Singh, A. P., & Varshney, C. K. (2006a). Isoprene emission from the forest of Haryana state. Environmental Monitoring and Assessment, doi:10.1007/s10661-005-9170-9.

  • Singh, A. P., & Varshney, C. K. (2006b). Seasonal variations in isoprene emission from tropical deciduous tree species. Environmental Monitoring and Assessment doi:10.1007/s10661-006-9471-7.

  • Tingey, D., Manning, M., Grothaus, L., & Burns, W. F. (1979). The influence of light and temperature on isoprene emission rates from live oak. Plant Physiology, 47, 112–118.

    Article  CAS  Google Scholar 

  • Varshney, C. K., & Rout, C. (1998). Ethylene diurea (EDU) protection against ozone injury in Tomato plants at Delhi. Journal of Environmental Contamination and Toxicology, 1, 188–193.

    Article  Google Scholar 

  • Varshney, C. K., & Singh, A. P. (2002). Measurement of ambient concentration of nitrogen dioxide in Delhi using passive diffusion tube sampler. Current Science, 83, 731–735.

    CAS  Google Scholar 

  • Varshney, C. K., & Singh, A. P. (2003). Isoprene emission from Indian trees. Journal of Geophysical Research, 108(D24), 4808.

    Article  CAS  Google Scholar 

  • Winer, A., Arey, J. Aschmann, S., Atkinson, R., Long, W., Morrison, L., et al. (1989). Hydrocarbon emission from vegetation found in California Central Valley’, Report prepared to the California Air Resource Board, Riverside, USA, Contract No AO-056, 32, pp. 267.

  • Winer, A. M., Fitz, D. R., & Miller, P. R. (1983). Investigation of the role of natural hydrocarbons in photochemical smog formation in California. Final Report to the California Air Resource Board, Contract No AO-056-32 267, 1983.

  • Zhihui, W., Yuhua, B., & Shuyu, Z. (2003). A biogenic volatile organic compounds emission inventory for Beijing. Atmospheric Environment, 37, 2771–3782.

    Article  CAS  Google Scholar 

  • Zimmerman, P. (1979). Testing of hydrocarbon emission from vegetation, leaf litter and aquatic surfaces, and development of a method for compiling biogenic emission inventories. EPA-450-4-70-004, US EPA, Research Triangle Park, NC.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhai Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Singh, A.P., Singh, M.P. et al. Emission of isoprene from common Indian plant species and its implications for regional air quality. Environ Monit Assess 144, 43–51 (2008). https://doi.org/10.1007/s10661-007-9940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9940-7

Keywords

Navigation