Advertisement

Concentrations of heavy metals in urban soils of Talcahuano (Chile): a preliminary study

  • Pedro TumeEmail author
  • Jaume Bech
  • Bernardo Sepulveda
  • Luis Tume
  • Joan Bech
Article

Abstract

Concentrations of Cd, Cr, Ni, Pb, and Zn in the top-(0–10 cm) and sub-surface (10–20 cm) soils of the Talcahuano urban area were measured. The main soil properties (organic matter, CaCO3, pH, particle sizes) were determined for a network of representative sampling sites. The mean Cr, Ni, Pb, and Zn contents in the urban topsoil samples from Talcahuano (37.8, 22.6, 35.2, 333 mg kg−1, respectively) were compared with mean concentrations for other cities around the world. The results revealed higher concentrations of heavy metals in topsoil samples than in sub-surface samples. The samples from IS1, IS2, and IS3, located in the Talcahuano industrial park, had higher Cr, Ni, Pb, and Zn contents than did samples from the other sites. This was probably due to local pollution by industrial (metallurgical) dust, although other diffuse pollution throughout the entire port region (shipyards, metallurgy, the dismantling of old ships), and contributions from the wind from adjacent industrial, storage, and vessel areas clearly played a role. Heavy metals were lowest in the sample taken on school grounds (SG).

Keywords

Urban soils Heavy metals Soil contamination Talcahuano Chile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., & Richter, P. (2004). Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Communications in Soil Science and Plant Analysis, 35(11–12), 1615–1634.CrossRefGoogle Scholar
  2. Ahumada, R., & Vargas, J. (2005). Trace metals: Inputs, sedimentation and accumulation in San Vicente Bay, Chile. Environmental Monitoring and Assessment, 100, 11–22.CrossRefGoogle Scholar
  3. Al-Khashman, O. A., & Shawabkeh, R. A. (2006). Metals distribution in soils around the cement factory in southern Jordan. Environmental Pollution, 140, 387–394.CrossRefGoogle Scholar
  4. Allisson, L. E., & Moodie, C. D. (1965). Carbonate. In C. A. Black (Ed.), Methods of soil analysis. Part II (pp. 1379–1396). Madison, WI: American Society of Agronomy.Google Scholar
  5. Alloway, B. J. (1995). Heavy metals in soils. London: Blackie.Google Scholar
  6. Badilla-Ohlbaum, R., Ginocchio, R., Rodríguez, P. H., Céspedes, A., González, S., Allen, H. E., et al. (2001). Relationships between soil copper contente and cooper content of selected crop plants in central Chile. Environmental Toxicology and Chemistry, 20(12), 2749–2757.CrossRefGoogle Scholar
  7. Banat, K. M., Howari, F. M., Al-Hamed, A. A. (2005). Heavy metals in urban soils of central Jordan: Should we worry about their environmental risk. Environmental Research, 97, 258–273.CrossRefGoogle Scholar
  8. Bech, J., Tume, P., Longan, L., Reverter, F. (2005). Baseline concentrations of trace elements in surface soils of the Torrelles and Sant Climent Municipal Districts (Catalonia, Spain). Environmental Monitoring and Assessment, 108, 309–322.CrossRefGoogle Scholar
  9. Birke, M., & Rauch, U. (2000). Urban geochemistry in the Berlin Metropolitan Area. Environmental Geochemistry and Health, 22, 233–248.CrossRefGoogle Scholar
  10. Black, C. A. (Ed.) (1967). Methods of soil analysis. Madison, WI: American Society of Agronomy, Inc.Google Scholar
  11. Carrasco, M. A., & Prendez, M. (1991). Element distribution of some soils of continental and the Antartic Peninsula. Projection to atmospheric pollution. Water, Air and Soil Pollution, 57–58:713–722.CrossRefGoogle Scholar
  12. CONAMA, Comisión Nacional de Medio Ambiente. (1995). Diagnostico de la Situación Ambiental en la Comuna de Talcahuano. Síntesis.Google Scholar
  13. Crnkovic, D., Ristic, M., & Antonovic, D. (2006). Distribution of heavy metals and Arsenic in soils of Belgrade (Serbia and Montenegro). Soil & Sediment Contamination, 15, 581–589.CrossRefGoogle Scholar
  14. De Gregori, I., Fuentes, E., Rojas, M., Pinochet, H., & Potin-Gautier, M. (2003). Monitoring of copper, arsenic and antimony levels in agricultural soils impacte and non-impacted by mining activities, from three regions in Chile. Journal of Environmental Monitoring, 5(2), 287–295.CrossRefGoogle Scholar
  15. De Miguel, E., Irribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.CrossRefGoogle Scholar
  16. De Miguel, E., Jiménez de Grado, M., Llamas, J. F., Martín-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application to the trace elements load in the urban soil of Madrid (Spain). Science of the Total Environment, 215, 113–122.CrossRefGoogle Scholar
  17. Diawara, M., Litt, J. S., Unis, D., Alfonso, N., Martinez, L., Crock, J. G., et al. (2006). Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk. Environmental Geochemistry and Health, 28, 297–315.CrossRefGoogle Scholar
  18. Environmental Protection Agency (EPA) (2003). Ecological soil screening levels for lead. Interim Final, OSWER Directive 9285.7–70, 244 p. Retrieved November 2006, from http://www.epa.gov/ecotox/ecossl/pdf/eco-ssl_lead.pdf.
  19. Flynn, H. C., Mc Mahon, V., Diaz, G. C., Demergasso, C. S., Corbisier, P., Meharg, A. A., et al. (2002). Assessment of bioavailable arsenic and copper in soils and sediments from the Antofagasta region of northern Chile. Science of the Total Environment, 286(1–3), 51–59.CrossRefGoogle Scholar
  20. Galli, C. (1967). Geología urbana y suelo de fundación de Concepción y Talcahuano, Chile. Universidad de Concepción.Google Scholar
  21. Hammond, P. B. (1982). Metabolism of lead. In J. J. Chisolm & D. M. O’Hara (Eds.), Lead absorption in children: Management clinical and environment aspects. Baltimore: Urban and Schwartzenberg.Google Scholar
  22. Harrison, R. M., Laxen, D. P. H., Wilson, S. J. (1981). Chemical associations of lead, cadmium, copper, and zinc in street dust and roadside soil. Environmental Science & Technology, 15, 1378–1383.CrossRefGoogle Scholar
  23. Higueras, P., Oyarzun, R., Oyarzun, J., Maturana, H., Lillo, J., & Morata, D. (2004). Environmental assessment of cooper–gold–mercury mining in the Andacollo and Punitaqui districts, northern Chile. Applied Geochemistry, 19, 1855–1864.CrossRefGoogle Scholar
  24. Imperato, M., Adamo, P., Naimo, D., Arenzo, M. Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.CrossRefGoogle Scholar
  25. ISO 11466 (2002). Soil quality – Extraction of trace elements soluble in aqua regia. International Organization for Standardization.Google Scholar
  26. Kabata-Pendias, A. (2001). Trace elements in soils and plants (2nd edn.). Boca Raton, FL: CRC Press.Google Scholar
  27. Lau, W. M., & Wong, H. M. (1982). An ecology survey of lead contents in roadside dusts and soils in Hong Kong. Environmental Research, 28, 39–54.CrossRefGoogle Scholar
  28. Li, X. D., Poon, C. S., & Pui, S. L. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.CrossRefGoogle Scholar
  29. Ljung, K., Otabbong, E., & Selinus, O. (2006). Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environmental Geochemistry and Health, 28, 353–364.CrossRefGoogle Scholar
  30. Lux, W. (1986). Long-term heavy metal and as pollution of soils, Hamburg, Germany. Applied Geochemistry, Suppl. 2, 135–143.Google Scholar
  31. Madrid, L., Diaz-Barrientos, E., Reinoso, R., & Madrid, F. (2004). Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. European Journal of Soil Science, 55, 209–217.CrossRefGoogle Scholar
  32. Madrid, L., Diaz-Barrientos, E., Ruiz-Cortés, E., Reinoso, R., Biasioli, M., Davidson, C. M., et al. (2006). Variability in concentrations of potentially toxic elements in urban parks from six European cities. Journal of Environmental Monitoring, 8, 1158–1165.CrossRefGoogle Scholar
  33. Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2003). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.CrossRefGoogle Scholar
  34. MAPA. (1994). Métodos oficiales de análisis de suelos y aguas (Analytical methods for soils and water). Madrid: Spanish Ministry of Agriculture, Fishing and Food.Google Scholar
  35. Municipalidad de Talcahuano. (2000). Plan de Desarrollo Comunal (PLADECO-TALCAHUANO).Google Scholar
  36. Nriagu, J. O. (1988). A silent epidemic of environmental poisoning? Environmental Pollution, 50, 139–161.CrossRefGoogle Scholar
  37. Pizarro, I., Gomez, M. M., Cámara, C., Palacios, M. A. (2003). Distribution of arsenic species in environmental samples collected in Northern Chile. International Journal of Environmental Analytical Chemistry, 83(10), 2879–2890.Google Scholar
  38. Richter, P., Seguel, R., Ahumada, I., Verdugo, R., Narváez, J., & Shibata, Y. (2004). Arsenic speciation in environmental samples of a mining impacted sector of central Chile. Journal of the Chilean Chemical Society 49(4), 333–339.Google Scholar
  39. Schalscha, E., & Ahumada, I. (1998). Heavy metals in rivers and soils of central Chile. Water Science and Technology, 17(8), 251–255.CrossRefGoogle Scholar
  40. Schumacher, M., Meneses, M., Granero, S., Llobet, J. M., & Domingo, J. L. (1997). Trace element pollution of soil collected near a municipal solid waste incinerator: Human risk. Bulletin of Environmental Contamination and Toxicology, 59, 861–867.CrossRefGoogle Scholar
  41. Simonson, R. W. (1995). Airborne dust and its significance to soils. Geoderma, 65, 1–43.CrossRefGoogle Scholar
  42. Surthland, R. A., Tolosa, C. A., Tack, F. M. G., Verloo, M. G. (2000). Characterization of selected element concentrations and enrichment ratios in background and anthropogenic impacted roadside areas. Archives of Environmental Contamination and Toxicology, 38, 428–438.CrossRefGoogle Scholar
  43. Thacker, S. B., Hoffman, A., Steinberg, K., Zack, M., & Smith, J. (1992). Effect of low-level body burdens of lead on the mental development of children: Limitations of metal-analysis in a review of longitudinal data. Archives of Environmental Health, 41, 336–347.CrossRefGoogle Scholar
  44. Thornton, I. (1991). Metal contamination of soils in urban areas. In P. Bullock & P. J. Gregory (Eds.), Soils in the urban environment (pp. 47–75). Oxford, UK: Blackwell.Google Scholar
  45. Tume, P., Bech, J., Longan, L., Tume, L., Reverter, F., & Sepúlveda, B. (2006a). Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecological Engineering, 27(3), 145–152.CrossRefGoogle Scholar
  46. Tume, P., Bech, J., Longan, L., Tume, L., Reverter, F., Bech, J., et al. (2006b). Baseline concentrations of potentially toxic elements in natural surface soils in Torrelles (Spain). Environ. Forensics, 7, 1–7.CrossRefGoogle Scholar
  47. VROM, Ministry of Housing, Spatial Planning and Environment of Netherlands (2000). Circular on target values and intervention values for soil remedation. Departament of Soil Protection.Google Scholar
  48. Yassoglou, N., Posmas, C., Asimakopoulos, J., Kallianou, C. (1987). Heavy metals contamination of roadside soils in the greater Athens area. Environmental Pollution, 47, 293–304.CrossRefGoogle Scholar
  49. Zhang, C. (2006). Using multivariate analysis and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142, 501–511.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Pedro Tume
    • 1
    Email author
  • Jaume Bech
    • 2
  • Bernardo Sepulveda
    • 3
  • Luis Tume
    • 4
  • Joan Bech
    • 5
  1. 1.Engineering FacultyUniversidad Católica de la Santísima ConcepciónConcepciónChile
  2. 2.Chair of Soil ScienceUniversity of BarcelonaBarcelonaSpain
  3. 3.Sciences FacultyUniversidad Nacional de PiuraPiuraPerú
  4. 4.Department of SciencesPontificia Universidad Católica del PerúLimaPerú
  5. 5.Department of Astronomy and MeteorologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations