Skip to main content
Log in

Management of hazardous road derived respirable particulates using magnetic properties of tree leaves

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The magnetic properties of tree leaves along with their ecological, economical and aesthetic importance can be used to control road derived respirable particulates. Isothermal remanent magnetization (IRM300 mT) of three different tree leaves viz. Mango (Mangifera indica), Sisso (Dalbergia sisso) and Banyan (Ficus benghalensis) were determined and IRM300 mT normalized for the leaf area. The normalized 2-D magnetization of leaves as shown by results is dominantly controlled by leaf morphology and traffic density. F. benghalensis (Banyan) leaf has highest 2-D magnetization and D. sisso (Sisso) leaf having least 2-D magnetization suggesting greater ability of F. benghalensis (Banyan) tree leaves to reduce magnetic particulates. The particle size of the magnetic grains falls in the category of PM2.5, a particle size hazardous to human health due to its capacity to be inhaled deeply into the lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfani, A., Baldantoni, D., Maisto, G., Bartoli, G., & Virzo de Santo, A. (2000). Temporal and spatial variation in C, N, S and trace element contents in the leaves of Quercus ilex within the urban area of Naples. Environmental Pollution, 109, 119–129.

    Article  CAS  Google Scholar 

  • Flanders, P. J. (1994). Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. Journal of Applied Physics, 75, 5931–5936.

    Article  CAS  Google Scholar 

  • Freer-Smith, P. H., Holloway, S., & Goodman, A. (1997). The uptake of particulates by an urban woodland, site description and particulate composition. Environmental Pollution, 95(1), 27–35.

    Article  CAS  Google Scholar 

  • Gautam, P., Blaha, U., & Appel, E. (2005). Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmospheric Environment, 39, 2201–2211.

    Article  CAS  Google Scholar 

  • Georgeaud, V. M., Rochette, P., Ambrosi, J. P., Vandamme, D., & Williamson, D. (1997). Relationship between heavy metals and magnetic properties in a large polluted catchments, the Etang de Berre (South France). Physics and Chemistry of the Earth, 22(1–2), 211–214.

    Article  Google Scholar 

  • Hanesch, M., Scholger, R., & Dekkers, M. J. (2001). The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Physics and Chemistry of the Earth, 26(11–12), 885–891.

    Google Scholar 

  • Hanesch, M., Scholger, R., & Rey, D. (2003). Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmospheric Environment, 37, 5125–5133.

    Article  CAS  Google Scholar 

  • Harrison, R. M., & Yin, J. (2000). Particulate matter in the atmosphere: Which particle properties are important for its effects on health. The Science of the Total Environment, 249, 85–101.

    Article  CAS  Google Scholar 

  • Hay, K. L., Dearing, J. A., Baban, S. M. J., & Loveland, P. (1997). A preliminary attempt to identify atmospherically derived pollution particles in English topsoils from magnetic susceptibility measurements. Physics and Chemistry of the Earth, 22(1–2), 207–210.

    Article  Google Scholar 

  • Heider, F., Zitzelsberger, A., & Fabian, K. (1996). Magnetic susceptibility and remanent coercive force in grown magnetic crystals from 0.1 μm to 6 mm. Physics and Earth Planet International, 93, 239–256.

    Article  CAS  Google Scholar 

  • Hoffmann, V., Knab, M., & Appel, E. (1999). Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration, 66, 313–326.

    Article  CAS  Google Scholar 

  • Hunt, A., Jones, J., & Oldfield, F. (1984). Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Science of the Total Environment, 33, 129–139.

    Article  CAS  Google Scholar 

  • Impens, R. A., & Delcarte, E. (1979). Survey of urban trees in Brussels Belgium. Journal of Arboriculture, 5, 169–176.

    Google Scholar 

  • Jordanova, N., Jordanova, D., Veneva, L., Yorova, K., & Petrovsky, E. (2003). Magnetic response of soils and vegetation to heavy metal pollution – A case study. Environmental Science and Technology, 37, 4417–4424.

    Article  CAS  Google Scholar 

  • Leocoanet, H., Leveque, F., & Ambrosi, J.-P. (2001). Magnetic properties of salt-marsh soils contaminated by iron industry emissions (Southeast France). Journal of Applied Geophysics, 48, 67–81.

    Article  Google Scholar 

  • Matzka, J., & Maher, B. A. (1999). Magnetic biomonitoring of roadside tree leaves, identification of spatial and temporal variations in vehicle-derived particulates. Atmospheric Environment, 33, 4565–4569.

    Article  CAS  Google Scholar 

  • Moreno, E., Sagnotti, L., Dinares-Turell, J., Winkler, A., & Cascella, A. (2003). Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmospheric Environment, 37, 2967–2977.

    Article  CAS  Google Scholar 

  • Morris, W. A., Versteeg, J. K., Bryant, D. W., Legzdins, A. E., McCarry, B. E., & Marvin, X. H. (1995). Preliminary comparisons between mutagenic and magnetic susceptibility of respirable airborne particle. Atmospheric Environment, 29, 3441–3450.

    Article  CAS  Google Scholar 

  • Muxworthy, A., Matzka, J., & Petersen, N. (2001). Comparison of magnetic parameters of urban atmospheric particulate matter with pollution and meteorological data. Atmospheric Environment, 35, 4379–4386.

    Article  CAS  Google Scholar 

  • Muxworthy, A., Schmidbauer, E., & Petersen, N. (2002). Magnetic properties and Mossbauer spectra of urban atmospheric particulate matter, a case study from Munich, Germany. Geophysical Journal International, 150, 558–570.

    Article  Google Scholar 

  • Olson, K. W., & Skogerboe, R. K. (1975). Identification of soil lead compounds from automotive sources. Environmental Science and Technology, 9, 227–230.

    Article  CAS  Google Scholar 

  • Pope, III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287, 1132–1141.

    Article  CAS  Google Scholar 

  • Prajapati, S. K., Pandey, S. K., & Tripathi, B. D. (2006). Monitoring of vehicles derived particulates using magnetic properties of leaves. Environmental Monitoring and Assessment. doi:10.1007/s10661-005-9055-y

  • Shu, J., Dearing, J. A., Morse, A. P., Yu, L., & Yuan, N. (2001). Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties. Atmospheric Environment, 35, 2615–2625.

    Article  CAS  Google Scholar 

  • Urbat, M., Lehndorff, E., & Schwark, L. (2004). Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler – Part I: Magnetic properties. Atmospheric Environment, 38, 3781–3792.

    Article  CAS  Google Scholar 

  • USEPA (2004). Air quality criteria for particulate matter. Research Triangle Park, NC, USA, October.

  • WHO (2003). Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. World Health Organisation, pp. 1–94.

  • Wichmann, H. E., & Peters, A. (2000). Epidemiological evidence of the effects of ultra fine particle exposure. Philosophical Transactions of the Royal Society of London, A358, 2751–2769.

    Google Scholar 

  • Xie, S., Dearing, J. A., Boyle, J. F., Bloemendal, J., & Morse, A. P. (2001). Association between magnetic properties and element concentrations of Liverpool street dust and its implications. Journal of Applied Geophysics, 48, 83–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prajapati, S.K., Tripathi, B.D. Management of hazardous road derived respirable particulates using magnetic properties of tree leaves. Environ Monit Assess 139, 351–354 (2008). https://doi.org/10.1007/s10661-007-9841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9841-9

Keywords

Navigation