Skip to main content
Log in

Sulfate exports from multiple catchments in a glaciated forested watershed in western New York, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sulfate (\( SO^{{2 - }}_{4} \)) concentrations and fluxes were studied for multiple storm events in the Point Peter Brook watershed, a glaciated, forested watershed located in Western New York, USA. Investigations were performed across one large (696 ha) and three small (1.6–3.4 ha) catchments with varying extent of riparian and wetland areas. Concentrations of \( SO^{{2 - }}_{4} \) in groundwater sources (mean values: 238–910 μmolc L−1) were considerably greater than concentrations recorded for rainfall (60 μmolc L−1) and throughfall (72–129 μmolc L−1). Seasonality in \( SO^{{2 - }}_{4} \) concentrations was most pronounced for valley-bottom riparian waters with maximum concentrations in late winter–spring (February–March) and a minimum in late summer (August). Concentrations of \( SO^{{2 - }}_{4} \) in wetland water were considerably less than riparian water indicating the likelihood of \( SO^{{2 - }}_{4} \) reduction in anoxic wetland conditions. Storm events displayed a dilution pattern in \( SO^{{2 - }}_{4} \) concentrations with a minimum coinciding with the maximum in throughfall contributions. End member mixing analysis (EMMA) was able to predict the storm event concentrations of \( SO^{{2 - }}_{4} \) for four of the six comparisons. Concentrations of \( SO^{{2 - }}_{4} \) at the outlet of the large (696 ha) catchment were much greater than values recorded for the smaller catchments. Exports of \( SO^{{2 - }}_{4} \) in streamflow exceeded the inputs from atmospheric deposition suggesting that watersheds like Point Peter Brook may not show any immediate response to decreases in atmospheric \( SO^{{2 - }}_{4} \) deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alewell, C., Mitchell, M. J., Likens, G. E., & Krouse, H. R. (1999). Sources of stream sulfate at the Hubbard Brook Experimental Forest: Long-term analyses using stable isotopes. Biogeochemistry, 44, 281–299.

    Google Scholar 

  • Bailey, S. W., Mayer, B., & Mitchell, M. J. (2004). The influence of mineral weathering on drainage water sulfate in the northeastern United States. Hydrological Processes, 18, 1639–1653.

    Article  Google Scholar 

  • Baron, J. S., Allstott, E. J., & Newkirk, B. K. (1995). Analysis of long term sulfate and nitrate budgets in a Rocky Mountain basin. In Biogeochemistry of seasonally snow-covered catchments. Proceedings of a Boulder Symposium, July 1995., IAHS Publ. 228.

  • Bayley, S. E., Behr, R. S., & Kelly, C. A. (1986). Retention and release of sulfur from a freshwater wetland. Water, Air and Soil Pollution, 31, 101–114.

    Article  CAS  Google Scholar 

  • Burns, D. A., McDonnell, J. J., Hooper, R. P., Peters, N. E., Freer, J., Kendall, C., et al. (2001). Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological Processes, 15, 1903–1924.

  • Christopherson, N., & Hooper, R. P. (1992). Multivariate analysis of stream water chemical data: The use of principal component analysis for the end-member mixing problem. Water Resources Research, 28, 99–107.

    Google Scholar 

  • Devito, K. J., & Hill A. R. (1997). Sulfate dynamics in relation to groundwater-surface water interactions in headwater wetland of the southern Canadian Shield. Hydrological Processes, 11, 485–500.

    Article  Google Scholar 

  • Devito, K. J., & Hill, A. R. (1999). Sulfate mobilization and pore water chemistry in relation to groundwater hydrology and summer drought in two conifer swamps on the Canadian Shield. Water Air and Soil Pollution, 113, 97–114.

    Article  CAS  Google Scholar 

  • Dillon, P. J., & LaZerte, B. D. (1992). Response of the Plastic Lake Catchment, Ontario, to reduced sulphur deposition. Environmental Pollution, 77, 211–217.

    Article  CAS  Google Scholar 

  • Dow, C. L., & Dewalle, D. R. (1997). Sulfur and nitrogen budgets for five forested Appalachian plateau basins. Hydrological Processes, 11, 801–816.

    Article  Google Scholar 

  • Driscoll, C. T., Likens, G. E., & Church, M. R. (1998). Recovery of surface waters in the northeastern United States from decreases in atmospheric deposition of sulfur. Water Air and Soil Pollution, 105, 319–329.

    Article  CAS  Google Scholar 

  • Edwards, P. J., Gregory, J. D., & Lee, A. H. (1999). Seasonal sulfate deposition and export patterns for a small Appalachian watershed. Water, Air, Soil Pollution, 110, 137–155.

    Article  CAS  Google Scholar 

  • Eimers, M. C., & Dillon, P. J. (2002). Climate effects on sulphate flux from forested catchments in south-central Ontario. Biogeochemistry, 61, 337–355.

    Article  CAS  Google Scholar 

  • Eimers, M. C., Dillon, P. J., & Schiff, S. L. (2004). Sulfate flux from an upland forested catchment in south-central Ontario, Canada. Water, Air, and Soil Pollution, 152, 3–21.

    Article  CAS  Google Scholar 

  • Evans, H. E., Dillon, P. J., & Molot, L. A. (1997). The use of mass balance investigations in the study of biogeochemical cycle of sulfur. Hydrological Processes, 11, 765–782.

    Google Scholar 

  • Fitzhugh, R. D., Furman, T., & Korsak, A. K. (2001). Sources of stream sulfate in headwater catchments in Otter Creek wilderness, West Virginia, USA. Hydrological Processes, 15, 541–556.

    Article  Google Scholar 

  • Galloway, J. N., Norton, S. A., & Church, M. R. (1983). Freshwater acidification from atmospheric deposition of sulfuric acid: A conceptual model. Environmental Science & Technology, 17, 541A.

    Article  CAS  Google Scholar 

  • Gibson, J. H., Galloway, J. N., Schofield, C., McFee, W., Johnson, R., McCarley, S., et al. (1983). Rocky Mountain acidification study. U.S. Fish and Wildlife Service, Division of Biological Services, Eastern Energy and Land Use Team, FWS/oBS-80/40.17.

  • Hjerdt, K. N., McDonnell, J. J., Seibert, J., & Rodhe, A. (2004). A new topographic index to quantify downslope controls on local drainage. Water Resources Research, 40, W05602, doi:10.1029/2004WR003130.

    Article  Google Scholar 

  • Hornbeck, J. W., Bailey, S. W., Buso, D. C., & Shanley, J. B. (1997). Stream water chemistry and nutrient budgets for forested watersheds in New England: Variability and management implications. Forest Ecology and Management, 93, 73–89.

    Article  Google Scholar 

  • Huntington, T. G., Hooper, R. P., & Aulenbach, B. T. (1994). Hydrological processes controlling sulfate mobility in a small forested watershed. Water Resources Research, 30(2), 283–295.

    Article  CAS  Google Scholar 

  • Inamdar, S. P., & Mitchell, M. J. (2006). Hydrologic and topographic controls on storm-event exports of dissolved organic carbon (DOC) and nitrate across catchment scales. Water Resources Research, 42, W03421, doi:10.1029/2005WR004212, 2006.

    Article  Google Scholar 

  • Inamdar, S. P., & Mitchell, M. J. (2007a). Landscape controls on storm event runoff generation across multiple catchments in a forested glaciated watershed. Journal of Hydrology (in press).

  • Inamdar, S. P., & Mitchell, M. J. (2007b). Storm event exports of dissolved organic nitrogen (DON) across multiple catchments in a glaciated forested watershed. Journal of Geophysical Research, 112, G02014, doi:10.1029/2006JG000309.

  • Inamdar, S. P., O’Leary, N., Mitchell, M. J., & Riley, J. T. (2006). The impact of storm events on solute exports from a glaciated forested watershed in western New York, USA. Hydrological Processes, 20, 3423–3439.

    Article  CAS  Google Scholar 

  • Kane, J. S., Arbogast, B. F., & Leventhal, J. S. (1990). Characterization of Devonian Ohio shales DO-1 as a USGS geochemical reference sample. Geostandards Newsletter, 14, 169–196.

    Article  Google Scholar 

  • LaZerte, B. D. (1993). The impact of drought and acidification on the chemical exports from a minerotrophic conifer swamp. Biogeochemistry, 18, 153–175.

    Article  CAS  Google Scholar 

  • Likens, G. E., Driscoll, C. T., Buso, D. C., Mitchell, M. J., Lovett, G. M., Bailey, S. W., et al. (2002). The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry, 60, 235–316.

    Article  CAS  Google Scholar 

  • Lynch, J. A., & Corbett, E. S. (1989). Hydrologic control of sulfate mobility in a forested watershed. Water Resources Research, 25(7), 1695–1703.

    Article  CAS  Google Scholar 

  • McHale, M. R., McDonnell, J. J., Mitchell, M. J., & Cirmo, C. P. (2002). A field-based study of soil water and groundwater nitrate release in an Adirondack forested watershed. Water Resources Research, 38(4), 2–1:2–16.

    Google Scholar 

  • Mitchell, M. J., David, M. B., Maynard, D. G., & Telang, S. A. (1986). Sulfur constituents in soils and streams of a watershed in the Rocky Mountains of Alberta. Canadian Journal of Forest Research, 16, 315–320.

    Article  CAS  Google Scholar 

  • Mitchell, M. J., Mayer, B., Bailey, S. W., Hornbeck, J. W., Alewell, C., Driscoll, C. T., et al. (2001a). Use of stable isotope ratios for evaluating sulfur sources and losses at the Hubbard Brook Experimental Forest. Proceedings of Acid Rain 2000, Japan. Water, Air and Soil Pollution, 130, 75–86.

    Article  CAS  Google Scholar 

  • Mitchell, M. J., McGee, G. G., McHale, P., & Weathers, K. C. (2001b). Experimental design and instrumentation for analyzing solute concentrations and fluxes for quantifying biogeochemical processes in watersheds. Methodology paper series of the 4th International Conference on ILTER in East Asia and Pacific Region, Ulaanbaatar-Hatgal, Mongolia. 2001, pp. 15–21 2001 ILTER Network.

  • Mitchell, M. J., Piatek, K. B., Christopher, S., Mayer, B., Kendall, C., & McHale, P. (2006). Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach. Biogeochemistry, 78, 217–246.

    Article  CAS  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000) Wetlands (3rd ed.). New York, NY: Wiley.

    Google Scholar 

  • National Atmospheric Deposition Program (NADP). (2006). NADP Weather site: http://nadp.sws.uiuc.edu/sites/siteinfo.asp?net=NTN&id=NY10 (last accessed April 2007).

  • Nodvin, S. C., Van Miegroet, H., Lindberg, S. E., Nicholas, N. S., & Johnson, D. W. (1995). Acidic deposition, ecosystem processes, and nitrogen saturation in a high elevation Southern Appalachian Watershed. Water, Air and Soil Pollution, 85, 1647–1652.

    Article  CAS  Google Scholar 

  • Olcott, P. G. (1995). Groundwater atlas of the United States: Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont. USGS Publication No. HA 730-M. USGS, Reston, Virginia.

  • Phillips, R. A. (1988). Relationship between glacial geology and streamwater chemistry in an area receiving acid deposition. Journal of Hydrology, 101, 267–273.

    Article  Google Scholar 

  • Rochelle, B. P., Church, M. R., & David, M. B. (1987). Sulfur retention at intensively studied sites in the U.S. and Canada. Water, Air, and Soil Pollution, 33, 73–83.

    Article  CAS  Google Scholar 

  • Shanley, J. B., Mayer, B., Mitchell, M. J., Michel, R. J., Bailey, S. W., & Kendall, C. J. (2005). Tracing sources of streamwater sulfate during snowmelt using S and O isotope ratios of sulfate and 35S activity. Biogeochemistry, 76, 161–185.

    Article  CAS  Google Scholar 

  • Shanley, J. B., & Peters, N. E. (1993). Variations in aqueous sulfate concentrations at Panola Mountain, Georgia. Journal of Hydrology, 146, 361–382.

    Article  CAS  Google Scholar 

  • Steele, D. W., & Buttle, J. M. (1994). Sulfate dynamics in a northern wetland catchment during snowmelt. Biogeochemistry, 27, 187–211.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2007). M.K. Goddard CASTNET website: http://www.epa.gov/castnet/sites/mkg113.html (last accessed April 2007).

  • Warren, F. J., Waddington, J. M., Bourbonniere, R. A., & Day, S. M. (2001). Effect of drought on hydrology and sulfate dynamics in a temperate swamp. Hydrological Processes, 15, 3133–3150.

    Article  Google Scholar 

  • Wigington, P. J. Jr., Davis, T. D., Tranter, M., & Eshleman, K. N. (1990). Episodic acidification of surface waters due to acidic deposition, NAPAP Report 12, In Acidic deposition: State of science and technology, National Acidic Precipitation Assessment Program. Washington, DC: NAPAP.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreeram P. Inamdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inamdar, S.P., Mitchell, M.J. Sulfate exports from multiple catchments in a glaciated forested watershed in western New York, USA. Environ Monit Assess 139, 227–245 (2008). https://doi.org/10.1007/s10661-007-9830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9830-z

Keywords

Navigation