Skip to main content
Log in

Comparison of ALAD activities of Citrobacter and Pseudomonas strains and their usage as biomarker for Pb contamination

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Delta-aminolevulinate dehydratase (ALAD) activity has been used in prokaryotes and eukaryotes as a biomarker for environmental lead (Pb) exposure and toxicity. Microorganisms are sensitive indicators of toxicity at the fundamental level of ecological organization, but bacterial biomarker studies are focused on the Pseudomonas strains in Group I and E coli. The objectives of the present work were to determine if Burkholderia gladioli belonging to group II, due to its 16SrRNA similarity, can be used as biomarker in metal contamination and compare its possible usage with Pseudomonas aeruginosa and Citrobacter freundii (previously known as Esherichia freundii) and Bacterium freundii which are classified in Group I. In this study, ALAD activity in an environmental strains of Burkholderia gladioli, Pseudomonas aeruginosa, Citrobacter freundii were investigated to evaluate potential inhibition by Pb and other toxic metals. When the ALAD activity of Burkholderia gladioli was tested, Co and Pb decreased activity by 27 and 71%, respectively. In addition to these findings, Zn increased the activity up to 26%. These effects were found to be statistically meaningful (p < 0.05). It was determined that the increase of lead concentration inhibites the ALAD activity at each of the three strains. There was a statistically significant dose–response relationship between ALAD activity in cells of Burkholderia gladioli and Pb (Pearson correlation coefficent = −0.665; r 2 = 0.665, and p < 0.001). The strongest ALAD inhibition which was measured was 90% at Burkholderia gladioli when protein extracts were incubated with 750 μM of Pb. The relationship between Pb and ALAD activity was statistically described by [ALAD Activity] = 0.476−0.000597 × [Pb]. According to the obtained results, we suggest that the ALAD of Burkholderia gladioli can be used as a biomarker for lead contamination in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aisemberg, J., Nahabedian, D. E., Wider, E. A., & Guerrero, N. R. V. (2005). Comparative study on two freshwater invertebrates for monitoring environmental lead exposure. Toxicology, 210, 45–53.

    Article  CAS  Google Scholar 

  • Battistuzi, G., Petrucci, R., Silvagni, L., Urbani, F. R., & Caiola, S. (1981). δ aminolevulinate dehydratase: A new genetic polymorphism in man. Annals of Human Genetics, 45, 223–229.

    Article  Google Scholar 

  • Boulay, J. P. D., Richard, N. S., Gordon, C. L., & Webber, C. E. (1998). Effect of the delta-aminolevulinate dehydratase polymorphism on the accumulation of lead in bone and blood in lead smelter workers. Environmental Research, 77, 49–61.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A refined and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytic Biochemistry, 72, 248.

    Article  CAS  Google Scholar 

  • Brisse, S., Stefani, S., Verhoef, J., Belkum, A. V., Vandamme, P., & Goessens, W. (2002). Comparative evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of isolates of the Burkholderia cepacia complex. Journal of Clinical Microbiology, 40, 1743–1748.

    Article  CAS  Google Scholar 

  • Conner, E. A., & Fowler, B. A. (1994). Biochemical and immunological properties of hepatic δ-aminolevulinic acid dehydratase in channel catfish (Ictalurus punctatus). Aquatic Toxicology, 28, 37–52.

    Article  CAS  Google Scholar 

  • David, R., Bodlaender, B. P., & Shemin, D. (1980). Mechanism of porphobilinogen synthase. The Journal of Biological Chemistry, 255, 2030–2035.

    Google Scholar 

  • Deguchi, J., Tamura, M., & Yamazaki, I. (1985). Photoooxidation of porphyrin in MG-substituted horseradish peroxidase. The Journal of Biological Chemistry, 260, 15542–15546.

    CAS  Google Scholar 

  • Frankenberg, N., Jahn, D., & Jaffe, E. (1999). Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions. Biochemistry, 38, 13976–13982.

    Article  CAS  Google Scholar 

  • Frere, F., Schubert, W. D., Stauffer, F., Frankenberg, N., Neier, R., Jahn, D., et al. (2002). Structure of Porphobilinogen Synthase from Pseudomonas aeruginosa in complex with 5-Fluorolevulinic acid suggests a double schiff base mechanism. Journal of Molecular Biology, 320, 237–247.

    Article  CAS  Google Scholar 

  • Gilligan, P. H. (1991). Microbiology of airway disease in patients with cystic fibrosis. Clinical Microbiology Reviews, 4, 35–51.

    CAS  Google Scholar 

  • Guerin, W. F., & Boyd, S. A. (1995). Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions. Applied Environmental Microbiology, 61, 4061–4068.

    CAS  Google Scholar 

  • Haigler, B. E., Pettigrew, C. A., & Spain, J. C. (1992). Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Applied Environmental Microbiology, 58, 2237–2244.

    CAS  Google Scholar 

  • Jaffe, E. K. (2003). An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chemical Biology, 10, 25–34.

    Article  CAS  Google Scholar 

  • Johnsen, K., Andersen, S., & Jacobsen, C. S. (1996). Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars. Applied Environmental Microbiology, 62, 3818–3825.

    CAS  Google Scholar 

  • Jordan, P. M. (1991). The biosynthesis of 5-aminolevulinic acid and its transformation into uroporphyrinogen III. In A. Neuberger & L. L. N. Van Deenen (Eds.), New comprehensive biochemistry, vol. 19 (pp. 1–65). Amsterdam: Elsevier.

    Google Scholar 

  • Keel, C., Weller, D. M., Natsch, A., Defago, G., Cook, R. J., & Thomashow, L. S. (1996). Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology, 62, 552–563.

    CAS  Google Scholar 

  • Luzzaro, F., Endimiani, A., Tamborini, A., Belloni, R., Lombardi, G., & Toniolo, A. (2001). Evaluation of the phoenix™ automated microbiology system in identification and AST of clinical isolates of Pseudomonas spp.and other nonfermenting gram-negative bacteria. Presented at the 101st General Meeting of the American Society for Microbiology, Orlando, Florida.

  • Nandi, D. L., & Shemin, D. (1968). Delta-aminolevulinic acid dehydratase of Rhodospeudomonas spheroides II. Association to polymers and dissociation to subunits. Journal of Biological Chemistry, 243, 1231–1235.

    CAS  Google Scholar 

  • Newman, M. C., & Jagoe, C. H. (1994). Ligands and bioavaibility of metals in aquatic environments. In J. L. Hamelink, P. F. Landrum, H. L. Bergman, & W. H. Benson (Eds.), Bioavailability: Physical, chemical, and biological interactions (pp. 39–62). Boca Raton, FL: Lewis.

    Google Scholar 

  • Nicole, F., Dirk, W. H., & Dieter, J. (1999). Production, purification, and characterization of a Mg2+-responsive porphobilinogen synthase from Pseudomonas aeruginosa. Biochemistry, 38, 13968–13975.

    Article  Google Scholar 

  • Ogunseitan, O. A. (1998). Protein method for investigating mercuric reductase gene expression in aquatic environments. Applied and Environmental Microbiology, 64,191–204.

    Google Scholar 

  • Ogunseitan, O. A. (1999). Microbial proteins as biomarkers for ecosystem health. In K. Scow, G. Fogg, D. Hinton, & M. Johnson (Eds.), Integrated assessment of ecosystem healty (pp. 207–222). Boca Raton, FL: Lewis.

    Google Scholar 

  • Ogunseitan, O. A., Yang, S., & Ericson, J. (2000). Microbial δ-aminolevulinate dehydratase as a biosensor of lead biovailability in contaminated environments. Soil Biology & Biochemistry, 32, 1899–1906.

    Article  CAS  Google Scholar 

  • O’Sullivan, D. J., & O’Gara, F. (1992). Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiology and Molecular Biology Reviews, 56, 662–676.

    CAS  Google Scholar 

  • O’Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304.

    Article  CAS  Google Scholar 

  • Palleroni, N. J. (1984). Genus I. Pseudomonas (Migula 1894), vol. 1. (pp. 141–199). In N. R. Krieg & J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology. Baltimore, MD: Williams &Wilkins.

  • Palleroni, N. J. (1992). Human- and animal-pathogenic pseudomonads. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, & K.-H. Schleifer (Eds.), The prokaryotes. A handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications (pp. 3086–3103). New York: Springer Verlag.

    Google Scholar 

  • Palleroni, N. J. (1993). Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. Antonie van Leeuwenhoek, 64, 231–251.

    Article  Google Scholar 

  • Petrovich, R. M., Litwin, S., & Jaffe, E. K. (1996). Bradyrhizobium japonicum porphobilinogen synthase uses two Mg(II) and monovalent cations. Journal of Biological Chemistry, 271, 8692–8699.

    Article  CAS  Google Scholar 

  • Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30, 285–293.

    Article  CAS  Google Scholar 

  • Reynolds, K. D., Schwarz, M. S., McFarland, C. A., McBride, T., Adair, B., Strauss, R. E., et al. (2006). Northern pocket gophers (Thomomys talpoides) as biomonitors of environmental metal contamination. Environmental Toxicology and Chemistry, 25, 458–469.

    Article  CAS  Google Scholar 

  • Rocha, J. B. T., Tuerlinckx, S. M., Schetinger, M. R. C., & Folmer, V. (2004). Effect of group 13 metals on porphobilinogen synthase in vitro. Toxicology and Applied Pharmacology, 200, 169–176.

    Article  CAS  Google Scholar 

  • Sakai, T. (2000). Review article biomarkers of lead exposure. Industrial Health, 38, 127–142.

    Article  CAS  Google Scholar 

  • Sommer, S., & Beyersmann, D. (1984). Kinetics of aluminium-induced acid dehydratase. Equilibrium, kinetic, and 113 Cd-nmr-studies. Journal of Inorganic Biochemistry, 20, 131–145.

    Article  CAS  Google Scholar 

  • Tyler, S. D., Strathdee, C. A., Roze, K. R., & Johnson, W. M. (1995). Oligonucleotide primers designed to differentiate pathogenic Pseudomonas on the basis of the sequencing of genes coding for 16S–23S rRNA internal transcribed spacer. Clinical and Diagnostic Laboratory Immunology, 2, 448–453.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhsin Konuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciğerci, İ.H., Korcan, S.E., Konuk, M. et al. Comparison of ALAD activities of Citrobacter and Pseudomonas strains and their usage as biomarker for Pb contamination. Environ Monit Assess 139, 41–48 (2008). https://doi.org/10.1007/s10661-007-9808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9808-x

Keywords

Navigation