Skip to main content
Log in

Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ongoing development of microbial source tracking has made it possible to identify contamination sources with varying accuracy, depending on the method used. The purpose of this study was to test the efficiency of the antibiotic resistance analysis (ARA) method under low resistance by tracking the fecal sources at Turkey Creek, Oklahoma exhibiting this condition. The resistance patterns of 772 water-isolates, tested with nine antibiotics, were analyzed by discriminant analysis (DA) utilizing a five-source library containing 2250 isolates. The library passed various representativeness tests; however, two of the pulled-sample tests suggested insufficient sampling. The resubstitution test of the library individual sources showed significant isolate misclassification with an average rate of correct classification (ARCC) of 58%. These misclassifications were explained by low antibiotic resistance (Wilcoxon test P < 0.0001). Seasonal DA of stream E. coli isolates for the pooled sources human/livestock/deer indicated that in fall, the human source dominated (P < 0.0001) at a rate of 56%, and that human and livestock respective contributions in winter (35 and 39%), spring (43 and 40%), and summer (37 and 35%) were similar. Deer scored lower (17–28%) than human and livestock at every season. The DA was revised using results from a misclassification analysis to provide a perspective of the effect caused by low antibiotic resistance and a more realistic determination of the fecal source rates at Turkey Creek. The revision increased livestock rates by 13–14% (0.04 ≤ P ≤ 0.06), and decreased human and deer by 6–7%. Negative misclassification into livestock was significant (0.04 ≤ P ≤ 0.06). Low antibiotic resistance showed the greatest effect in this category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Factfinder, Census (2000). Demographic profile highlights [online]. Retrieved 22 April 2005, last date accessed, from http://factfinder.census.gov.

  • Bach, S. J., Stanford, K., & McAllister T. A. (2005). Survival of Escherichia coli O157:H7 in feces from corn and barley-fed steers. FEMS Microbiology Letters, 252, 25–33.

    Article  CAS  Google Scholar 

  • Buchko, S. J., Holley, R. A., Olson, W. O., Gannon, V. P. J., Veira, D. M. (2000). The effect of different grain diets on fecal shedding of Escherichia coli O157:H7 by steers. Journal of Food Protection, 63(11), 1467–1474.

    CAS  Google Scholar 

  • Burnes, B. S. (2003). Antibiotic resistance analysis of fecal coliforms to determine fecal pollution sources in a mixed-use watershed. Environmental Monitoring and Assessment, 85(1), 87–98.

    Article  Google Scholar 

  • Gordon, D. M., (2001). Geographical structure and host specificity in bacteria and the implications for tracing the source of coliform contamination. Microbiology, 147, 1079–1085.

    CAS  Google Scholar 

  • G3Grauke L. J., Wynia, S. A., Sheng, H. Q., Yoon, J. W., Williams, C. J., Hunt, C. W., et al. (2003). Acid resistance of Escherichia coli O157:H7 from the gastrointestinal tract of cattle fed hay or grain. Veterinary Microbiology, 95(3), 211–225.

    Article  CAS  Google Scholar 

  • Graves, A. K., Hagedorn, C., Teetor, A., Mahal, M., Booth, A. M., & Reneau, R. B. (2002). Antibiotic resistance profiles to determine sources of fecal contamination in a rural Virginia watershed. Journal of Environmental Quality, 31, 1300–1308.

    Article  CAS  Google Scholar 

  • Hagedorn, C., Robinson, S. L., Filtz, J. R., Grubbs, S. M., Angier, T. A., & Reneau, R. B. Jr. (1999). Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal Streptococci. Applied and Environmental Microbiology, 65(12), 5522–5531.

    CAS  Google Scholar 

  • Hartel, P. G., Summer, J. D., Hill, J. L., Collins, J. V., Entry, J. A., & Segars, W. I. (2002). Geographic variability of Escherichia coli ribotypes from animals in Idaho and Georgia. Journal of Environmental Quality, 31, 1273–1278.

    Article  CAS  Google Scholar 

  • Harwood, V. J., Whitlock, J., & Withington, V. (2000). Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Applied and Environmental Microbiology, 66(9), 3698–3704.

    Article  CAS  Google Scholar 

  • Harwood, V. J., Wiggins, B., Hagedorn, C., Ellender, R. D., Gooch, J., Kern, J., et al. (2003). Phenotyping library-based microbial source tracking methods: efficacy in the California collaborative study. Journal of Water and Health, 1(4), 153–166.

    Google Scholar 

  • Jenkins, M. B., Hartel, P. G., Olexa, T. J., & Stuedemann, J. A. (2003). Putative temporal variability of Escherichia coli ribotypes from yearling steers. Journal of Environmental Quality, 32, 305–309.

    Article  CAS  Google Scholar 

  • Kelsey, R. H., Scott, G. I., Porter, D. E., Thompson, B., & Webster, L. (2003). Using multiple antibiotic resistance and land use characteristics to determine sources of fecal coliform bacterial pollution. Environmental Monitoring and Assessment, 81, 337–348.

    Article  Google Scholar 

  • Koenig, G. L. (2003). Viability of and plasmid retention in frozen recombinant Escherichia coli over time: A ten-year prospective study. Applied and Environmental Microbiology, 69(11), 6605–6609.

    Article  CAS  Google Scholar 

  • Moore, D. F., Harwood, V. J., Ferguson, D. M., Lukasik, J., Hannah, P., Getrich, M., et al. (2005). Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed. Journal of Applied Microbiology, 99, 618–628.

    Article  CAS  Google Scholar 

  • Murray, V. A. (2004). Internal report prepared for EPA. Center for Subsurface Modeling Support, Shaw Environmental, Ada, Oklahoma.

  • Oklahoma Department of Wildlife Conservation (2005). Retrieved 28 April 2005, last accessed, from http://www.wildlifedepartment.com/deer.htm (Online).

  • Parveen, S., Murphree, R. L., Edmiston, L., Kaspar, C. W., Portier, K. M., & Tamplin M. (1997). Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay. Applied and Environmental Microbiology, 63(7), 2607–2612.

    CAS  Google Scholar 

  • Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., & Lukasik, J. (2002). Microbial source tracking: current methodology and future directions. Applied and Environmental Microbiology, 68(12), 5796–5803.

    Article  CAS  Google Scholar 

  • Simpson, J. M., Santodomingo, J. W., & Reasoner, D. J. (2002). Microbial source tracking: state of the science. Environmental Science & Technology, 36(24), 5279–5288.

    Article  CAS  Google Scholar 

  • Stoeckel, D. M., Mathes, M. V., Hyer K. E., Hagedorn, C., Kator, H., Lukasik, J., et al. (2004). Comparison of seven protocols to identify fecal contamination sources using Escherichia coli. Environmental Science & Technology, 38, 6109–6117.

    Article  CAS  Google Scholar 

  • US Department of Agriculture, National Agriculture Statistics Service, Oklahoma Statistical Office (2005). Retrieved 17 February 2005, last accessed, from http://www.nass.usda.gov/ok/homepage.htm (Online).

  • Webster, L. F., Thompson, B. C., Fulton, M. H., Chesnut, D. E., Van Dolah, R. F., Leight, A. K., et al. (2004). Identification of sources of Escherichia coli in South Carolina estuaries using antibiotic resistance analysis. Journal of Experimental Marine Biology and Ecology, 298, 179–195.

    Article  Google Scholar 

  • Whitlock, J. E., Jones, D. T., & Harwood, V. J. (2002). Identification of sources of fecal coliforms in an urban watershed using antibiotic resistance analysis. Water Research, 36, 4273–4282.

    Article  CAS  Google Scholar 

  • Wiggins, B. A. (1996). Discriminant analysis of antibiotic resistance patterns in fecal Streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Applied and Environmental Microbiology, 62(11), 3997–4002.

    CAS  Google Scholar 

  • Wiggins, B. A., Cash, P. W., Creamer, W. S., Dart, S. E., Garcia, P. P., Gerecke, T. M., et al. (2003). Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries. Applied and Environmental Microbiology, 69(6), 3399–3405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Olivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivas, Y., Faulkner, B.R. Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance. Environ Monit Assess 139, 15–25 (2008). https://doi.org/10.1007/s10661-007-9805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9805-0

Keywords

Navigation