Skip to main content

Advertisement

Log in

Spatiotemporal distribution of arsineic species of oysters (Crassostrea gigas) in the coastal area of southwestern Taiwan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigated total arsenic (As) and As species contents of oysters (Crassostrea gigas) in different production areas, seasons and sea locations on the southwestern coast of Taiwan. Analytical results indicate that contents of total As, arsenite, arsenate, dimethylarsinic acid, monomethylarsonic acid and arsenobetaine in oysters are 9.90 ± 3.68, 0.091 ± 0.104, 0.033 ± 0.038, 0.529 ± 0.284, 0.037 ± 0.046 and 3.94 ± 1.33 mg/g (dry wt), respectively. A ratio of inorganic As concentrations to total As concentrations is 1.26%. Total As contents of oysters cultured in the outer sea are statistically significantly lower than those of oysters cultured in the inner sea. The total As contents of oysters is the highest in Putai, where the blackfoot disease prevails. The low As contents in oysters is attributed to the low temperature in winter, which slows the metabolism of oysters. A maximum value is 33.37 μg/g (dry) in Putai in spring, because a considerable amount of aquacultural waste water with high As contents is discharged into adjacent drainage channels and rivers there during that season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, J., Rubio, R., & Rauret, G. (1995). Extraction method for arsenic speciation in marine organisms. Fresenius Journal of Analytical Chemistry, 351, 420–425.

    Article  CAS  Google Scholar 

  • Ch’i, I. C., & Blackwell, R. Q. (1968). A controlled retrospective study of blackfoot disease, an endemic peripheral gangrene disease in Taiwan. American Journal of Epidemiology, 88, 7–24.

    CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  • Dagnac, T., Padro, A., Rubio, R., & Rauret, G. (1999). Speciation of arsenic in mussels by the coupled system liquid chromatography UV irradiation hydride generation inductively coupled plasma mass spectrometry. Talanta, 48, 763–772.

    Article  CAS  Google Scholar 

  • Denton, G. R. M., & Burdon-Jones, C. (1981). Influence of temperature and salinity on the uptake,distribution and depuration of mercury, cadmium and lead by the Black-lip oyster Saccostrea echinata. Marine Biology, 64, 317–326.

    CAS  Google Scholar 

  • Edmonds, J. S., & Francesconi, K. A. (1993). Arsenic in seafoods: Human health aspects andregulations. Marine Pollution Bulletin, 26, 665–674.

    Article  CAS  Google Scholar 

  • Geiszinger, A., Goessler, W., Kuehnelt, D., Francesconi, K., Kosmus, W. (1998). Determination of arsenic compounds in earthworms. Environmental Science & Technology, 32, 2238–2243.

    Article  CAS  Google Scholar 

  • Gomez-Ariza, J. L., Sanchez-Rodas, D., Giraldez, I., & Morales, E. (2000a). Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS. Analyst, 125, 401–407.

    Article  CAS  Google Scholar 

  • Gomez-Ariza, J. L., Sanchez-Rodas, D., Giraldez, I., & Morales, E. (2000b) A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta, 51, 257–268.

    Article  CAS  Google Scholar 

  • Han, B. C., Jeng, W. L., Hung, T. C., Ling, Y. C., Shieh, M. J., & Chien, L. C. (2000). Estimation of metal and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan. Environmental Pollution, 109, 147–156.

    Article  CAS  Google Scholar 

  • Han, B. C., Jeng, W. L., Jeng, M. S., Kao, L. T., Meng, P. J.,& Huang, Y. L. (1997). Rock-shells (Thais clavigera) as an indicator of As, Cu, and Zn contamination on the Putai coast of the black-foot disease area in Taiwan. Archives of Environmental Contamination and Toxicology, 32, 456–461.

    Article  CAS  Google Scholar 

  • Huang, Y. K., Lin, K. H., Chen, H. W., Chang, C. C., Liu, C. W., Yang, M. H. et al. (2003). Arsenic species contents at aquacultural farm and in farmed mouthbreeder (Oreochromis Mossambicus) in blackfoot disease hyperendemic areas. Food and Chemical Toxicology, 41, 1491–1500.

    Article  CAS  Google Scholar 

  • Hung, Y. W. (1982). Effects of temperature and chelating agents on cadmium uptake in the American oyster. Bulletin of Environmental Contamination and Toxicology, 28, 546–551.

    Article  CAS  Google Scholar 

  • Kirby, J., Maher, W., Chariton, A., & Krikowa, F. (2002). Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Applied Organometallic Chemistry, 16, 192–201.

    Article  CAS  Google Scholar 

  • Kohlmeyer, U., Kuballa, J., & Jantzen, E. (2002). Simultaneous separation of 17 inorganic and organic arsenic compounds in marine biota by means of high-performance liquid chromatography/inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry, 16, 965–974.

    Article  CAS  Google Scholar 

  • Liao, C. M., & Ling, M. P. (2003). Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Archives of Environmental Contamination and Toxicology, 45, 264–272.

    Article  CAS  Google Scholar 

  • Lin, K. H. (2004). Spatiotemporal distribution and bioaccumulation of arsenic species in the aquacultural ecosystem in the coastal areas of southwestern Taiwan (pp. 176–197). PhD Taiwan: dissertation, Institute of Bioenvironmental Systems Engineering, National Taiwan University.

  • Lin, Y. S., & Liang, M. H. (1982). Growth and setting of cultured oyster(Crassostrea Gigas Thunberg) in Putai bay. Bulletin of the Institute of Zoology, Academia Sinica, 21, 129–143.

    Google Scholar 

  • Norusis, M. J. (1998). SPSS 8.0, Guide to data analysis. Upper Saddle River, N.J.: Prentice-Hall.

    Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944.

    Article  CAS  Google Scholar 

  • Sanchez-Rodas, D., Geiszinger, A., Gomez-Ariza, J. L., & Francesconi, K. A. (2002). Determination of an arsenosugar in oyster extracts by liquid chromatography-electrospray mass spectrometry and liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic fluorescence spectrometry. Analyst, 127, 60–65.

    Article  CAS  Google Scholar 

  • Shiomi, K., Suglyama, Y., Shimakura, K., & Nagashima, Y. (1996). Retention and biotransformation of arsenic compounds administered intraperitoneally to carp. Fisheries Science, 62, 261–266.

    CAS  Google Scholar 

  • Taiwan EPA (2002). River water quality in Taiwan. Available at http://www.niea.gov.tw/protect/2002/2002-06.htm.

  • U.S. EPA (1998). Special report on ingested inorganic arsenic: Skin cancer, nutritional essentiality. Washington, D.C.: U.S. Environmental Protection Agency, 1998. Risk Assessment Forum, EPA-25/3-87-13.

    Google Scholar 

  • U.S. EPA (2004). Risk-based concentration table. Region 3, Philadelphia: U.S. Environmental Protection Agency.

    Google Scholar 

  • Valette-Silver, N. J., Riedel, G. F., Crecelius, E. A., Windom, H., Smith, R. G., & Dolvin, S. S. (1999). Elevated arsenic concentrations in bivalves from the southeast coasts of the USA. Marine Environmental Research, 48, 311–333.

    Article  CAS  Google Scholar 

  • Vilano, M., & Rubio, R. (2001). Determination of arsenic species in oyster tissue by microwave-assisted extraction and liquid chromatography-atomic fluorescence detection. Applied Organometallic Chemistry, 15, 658–666.

    Article  CAS  Google Scholar 

  • Wilson, E. A., Powell, E. N., Wade, T. L., Taylor, R. J., Presley, B. J., & Brooks, J. M. (1992). Spatial and temporal distributions of contaminant body burden and disease in Gulf of Mexico oyster populations: The role of local and large-scale climatic controls. HelgolaÉnder Meeresuntersuchungen, 46, 201–235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Wuing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CW., Huang, YK., Hsueh, YM. et al. Spatiotemporal distribution of arsineic species of oysters (Crassostrea gigas) in the coastal area of southwestern Taiwan. Environ Monit Assess 138, 181–190 (2008). https://doi.org/10.1007/s10661-007-9762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9762-7

Keywords

Navigation