Skip to main content
Log in

Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In some previous papers a probabilistic methodology was introduced to estimate a spatial index of risk of groundwater quality degradation, defined as the conditional probability of exceeding assigned thresholds of concentration of a generic chemical sampled in the studied water system. A crucial stage of this methodology was the use of geostatistical techniques to provide an estimation of the above-mentioned probability in a number of selected points by crossing spatial and temporal information. In this work, spatial risk values were obtained using alternatively stochastic conditional simulation and disjunctive kriging. A comparison between the resulting two sets of spatial risks, based on global and local statistical tests, showed that they do not come from the same statistical population and, consequently, they cannot be viewed as equivalent in a statistical sense. At a first glance, geostatistical conditional simulation may appear to represent the spatial variability of the phenomenon more effectively, as the latter tends to be smoothed by DK. However, a close examination of real case study results suggests that disjunctive kriging is more effective than simulation in estimating the spatial risk of groundwater quality degradation. In the study case, the potentially ‘harmful event’considered, threatening a natural ‘vulnerable groundwater system,’ is fertilizer and manure application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AA.VV. (1996). Vulnerabilità naturale e rischio di inquinamento delle acque sotterranee nella Pianura Padana. In G. Giuliano (Ed.), Rapporti dell’Istituto di Ricerca Sulle Acque (pp. 145). Roma: Irsa — CNR.

    Google Scholar 

  • Armstrong, M., & Dowd, P. A. (1993). (Eds.) Geostatistical simulation. London: Kluwer.

  • Barelli, G., Marino, L., & Pagotto, A. (1990). (Eds.) Caratterizzazione idraulica degli acquiferi. Studi sulla vulnerabilità degli acquiferi 2. In Quaderni di tecniche di protezione ambientale — Protezione delle acque sotterranee (pp. 15–26). Bologna: Pitagora.

  • Claiborne, H. C., & Gera, F. (1974). Potential containement failure mechanisms and their consequencies at a radioactive waste repository in bedded salt in New Mexico. In Oak Ridge National Laboratory Report ORNL-TM-4639.

  • Colombetti, A., Gelmini, R., & Zavatti, A. (1980). La conoide del fiume Secchia: modalità di alimentazione e rapporti col fiume (Province di Modena e Reggio Emilia). In Quad. Ist. Ric. Acque (p. 51). Roma: Irsa — CNR.

  • DLgs N. 152/99. Disposizioni sulla tutela delle acque dall’inquinamento e recepimento della direttiva 91/271/CEE concernente il trattamento delle acque reflue urbane, e della direttiva 91/676/CEE relativa alla protezione delle acque dall’inquinamento provocato dai nitrati provenienti da fonti agricole. Suppl. ord. G.U. del 29/5/1999.

  • Geovariances (2001) — ISATIS, Software manual, release 3.5.3. Geovariances Ecole des Mines de Paris, France.

  • Giuliano, G., Pellegrini, M., & Zavatti, A. (1995). (Eds.) Esempi di carte di vulnerabilità a scala regionale: La Pianura Padana, le province di Parma, Reggio Emilia e Modena. Studi sulla vulnerabilità degli Acquiferi. In Quaderni di tecniche di protezione ambientale — Protezione delle acque sotterranee (Vol.2). Bologna: Pitagora.

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  • Journel, A. G., & Huijbregts, Ch. J. (1978). Mining geostatistics. London: Academic.

    Google Scholar 

  • Krajewski, S. A., & Gibbs, B. L. (1993). A variography primer — Special Publication n.8. Boulder, CO: Gibbs.

    Google Scholar 

  • Lin, Y. P., Chang, T. K., Shih, C. W., & Tseng C. H. (2002). Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metal. Environmental Geology, 42, 900–909.

    Article  CAS  Google Scholar 

  • Lin, Y. P., Chang, T. K., & Teng, T. P. (2001). Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing and kriging methods. Environmental Geology, 41, 189–199.

    Article  CAS  Google Scholar 

  • Matheron, G. (1970). The theory of regionalised variables and its application. In Les Cahiers du Centre de Morphol. Mathemat. de Fointainebleau (pp. 211). Paris: Ecole des Mines.

  • Ott, W. R. (1995). Environmental statistics and data analysis. Boca Raton, FL: CRC.

    Google Scholar 

  • Paltrinieri, N., & Pellegrini, M. (1990). (Eds.) Comportamento idrodinamico dell’acquifero. Studi sulla vulnerabilità degli acquiferi, 2. In Quaderni di tecniche di protezione ambientale — Protezione delle acque sotterranee (pp. 9–14) Bologna: Pitagora.

  • Passarella, G., & Caputo, M. C. (2006). A methodology for space-time classification of groundwater quality. Environmental Monitoring and Assessment, 115(1–3), 95–117.

    Article  CAS  Google Scholar 

  • Passarella, G., Vurro, M., D’Agostino, V., Giuliano, G., & Barcelona, M. J. (2002). A probabilistic methodology to assess the risk of groundwater quality degradation. Environmental Monitoring and Assessment, 79, 57–74.

    Article  CAS  Google Scholar 

  • Raspa, G. (2000). Il ruolo della geostatistica nella modellizzazione ambientale. In Aspetti applicativi delle tecniche geostatistiche alle acque sotterranee — Quad. Ist. Ric. Acque 114. Roma: Irsa — CNR.

  • Rivoirad, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Oxford: Clarendon.

    Google Scholar 

  • Stein, A., Brouwer, J., & Bouma, J. (1997). Methods for comparing spatial variability patterns of milliet yield and soil data. Soil Science and Society American Journal, 61, 861–870.

    Article  CAS  Google Scholar 

  • Thompson, A. F. B., Ababou, R., & Gelhar, L. W. (1989). Implementation of three-dimensional turning bands random field generator. Water Resources Research, 25(10), 2227–2243.

    Article  Google Scholar 

  • Varnes, D. J. (1984). Commision on landslides and other mass-movements-IAEG. Landslide hazard zonation: A review of principles and practices. Paris: The UNESCO Press.

    Google Scholar 

  • Vicari, L., & Zavatti, A. (1990). (Eds.) Idrochimica, Studi sulla Vulnerabilità degli Acquiferi, 2. In Quaderni di tecniche di protezione ambientale — Protezione delle acque sotterranee (pp. 27–72). Bologna: Pitagora.

  • Visentini, M. (1935). Ricerche sulle acque sotterranee nell’alta Pianura Modenese fra Secchia e Panaro. Roma: Min. LL.PP. Serv. Idrograf. del Po.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Barca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barca, E., Passarella, G. Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation. Environ Monit Assess 137, 261–273 (2008). https://doi.org/10.1007/s10661-007-9758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9758-3

Keywords

Navigation