Skip to main content

Advertisement

Log in

Methane emission and heavy metals quantification from selected landfill areas in India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, an attempt has been made to study methane flux and quantification of heavy metals from Municipal Solid Waste (MSW) landfill areas of selected cities in India. During the period of study, the average value of methane flux was estimated from these landfill areas varied from 146–454 mg/m2/h. Methane emission from landfill is of serious environmental global concern as it accounts for approximately 15 percentages of current Greenhouse gas emissions. It has been estimated that methane emission, from landfill areas in the world, in next two decades would be same as that what is emitted from paddy fields presently. Besides, the estimation of methane flux, quantification of some heavy metals was conducted to analyse the suitability of using MSW as compost. The average values for metals were observed to be both within the range of USEPA and Indian standards for MSW disposal in landfill areas and to be used as compost respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhide, A. D. (Eds.) (1998). Global environmental chemistry. New Delhi, India: Narosa Publication House.

  • Bingemer, H. G., & Crutzen, P. J. (1987). The production of methane from solid wastes. Geophysics Research, 92, 2181–2187.

    Article  CAS  Google Scholar 

  • Bodelier, P. L. E., & Laanbroek, H. J. (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 47, 265–277.

    Article  CAS  Google Scholar 

  • Boeckx, P., & Cleemput, V. O. (1996). Flux estimates from soil methanogenesis and methanotrophy: Landfills, rice paddies, natural wetlands and aerobic soils. Environmental Monitoring and Assessment, 42, 189–207.

    Article  CAS  Google Scholar 

  • Böjesson, G., & Svensson, B. H. (1997). Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Management and Research, 15, 33–54.

    Google Scholar 

  • Cicerone, R. J., & Oremland, R. S. (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 22, 299–307.

    Article  Google Scholar 

  • Dickinson, R. E., & Cicerone, R. J. (1986). Future global warming from atmospheric trace gases. Nature, 319, 109–115.

    Article  CAS  Google Scholar 

  • Gupta, M., Verma, S. D., Parasher, D. C., & Gupta, P. K. (1994). Temporal variations of methane emission from rice paddy fields of Gujarat. Indian Journal of Radio and Space Physics, 23, 265–268.

    CAS  Google Scholar 

  • Gurijala, K. R., & Suflita, J. M. (1993). Environmental factors influencing methanogenesis from refuse in landfill samples. Environmental Science and Technology, 27, 1176–1181.

    Article  CAS  Google Scholar 

  • He, X. T., Logan, T. J., & Train, S. J. (1995). Physical and chemical characteristics of selected US municipal solid waste compost. Environmental Quality, 24, 543–552.

    Article  CAS  Google Scholar 

  • Houghton, J. T., Callander, B. A., & Varney, S. K. (1992). Climate change. The supplementary report to the IPCC scientific assessment. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • India: State of the Environment (2001). UNEP Publication.

  • Jones, H. A., & Nedwell, D. B. (1993). Methane emission and methane oxidation in landfill cover soil. FEMS Microbiology Ecology, 102, 185–195.

    Article  CAS  Google Scholar 

  • Kreileman, G. J. J., & Bouwman, A. E. (1994). Computing land use emission of greenhouse gases. Water, Air and Soil Pollution, 76, 231–258.

    Article  CAS  Google Scholar 

  • Ladapo, J. A., & Bariaz, M. A. (1997). Isolation and characterization of refuse methanogens. Journal of Applied Microbiology, 82, 751–758.

    Article  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Review, 32, 235–283.

    Article  CAS  Google Scholar 

  • Matthews, E. (Eds.) (1993). Atmospheric methane: Sources, sinks and role in global change NATO ASI Series. Berlin, Heilderberg, Germany: Springer.

  • Moturi, M. C. Z., Rawat, M., & Subramanian, V. (2004a). Distribution and sequential extraction of heavy metals in solid waste from the industrial belt of Delhi, India. Environmental Monitoring and Assessment, 95(1–3), 185–199.

    Google Scholar 

  • Moturi, M. C. Z., Rawat, M., & Subramanian, V. (2004b). Distribution and partitioning of phosphorus in solid waste and sediments from drainage canals in the industrial belt of Delhi, India. Chemosphere, 60(2), 237–244.

    Article  CAS  Google Scholar 

  • Municipal Solid Waste (Management and Handling Rule) (2001). Ministry of Environmental and Forest (MoEF), Govt. of India. http://www.envfor.nic.in.

  • Nozheikov, A. N., Lifshitz, A. B., Lebedev, V. S., & Zavarzin, G. A. (1993). Emission of methane into the atmosphere from landfills in the former USSR. Chemosphere, 26, 401–417.

    Article  Google Scholar 

  • Okalebo, J. R., & Gathua, K. W. (1993). Lab methods of soil and plant analysis. Nairobi, Kenya: Soil Science Social of East Africa.

    Google Scholar 

  • Parashar, D. C., Gupta, P. K., Raj, J. S., Dharma, R. C., & Singh, N. (1993). Effect of solid temperature on methane emission from paddy field. Chemosphere, 26, 247–250.

    Article  CAS  Google Scholar 

  • Parashar, D. C., Raj, J., & Gupta, P. K. (1991). Parameters affecting methane emission from paddy fields. Indian Journal of Radio Space Physics, 20, 12–17.

    CAS  Google Scholar 

  • Peer, R. L., Thorneloe, S. A., & Epperson, D. L. (1993). A comparison of methods of estimating global methane emission from landfills. Chemosphere, 26, 387–400.

    Article  CAS  Google Scholar 

  • Rawat, M., Moturi, M. C. Z., & Subramanian, V. (2003). Inventory compilation and distribution of heavy metals in wastewater from small scale industrial areas of Delhi, India. Environmental Monitoring, 5, 906–912.

    Article  CAS  Google Scholar 

  • Rodhe, H. (1990). A comparison of the contribution of various gases to the greenhouse effect. Science, 248, 1217–1219.

    Article  CAS  Google Scholar 

  • Singh, J. S., Singh, S., & Kashyap, A. K. (1998). Contrasting patterns on methane flux in rice agriculture. Naturwissenschaften, 85, 494–497.

    Article  CAS  Google Scholar 

  • Thorneleo, S. A. (Eds.) (1993). Methane emission from landfill and open dumped, in van Amsted. In Proceedings of the International IPCC Workshop. Amersfoort, The Netherlands.

  • Verma, A., Subramanian, V., & Ramesh, R. (1999). Methane emission from a tropical urban wetlands. Current Science, 76(7), 1020–1022.

    Google Scholar 

  • Watson, R. T., Neira, F. L. G., Sanhueza, E., & Janetos, A. (Eds.) (1992). Sources and sinks. Cambridge, UK: Cambridge University Press.

  • Yagi, K., & Minami, K. (1990). Effects of organic matter application on methane emission from some Japanese paddy fields. Soil Science and Plant Nutrition, 36(4), 599–610.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Rawat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawat, M., Singh, U.K., Mishra, A.K. et al. Methane emission and heavy metals quantification from selected landfill areas in India. Environ Monit Assess 137, 67–74 (2008). https://doi.org/10.1007/s10661-007-9729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9729-8

Keywords

Navigation