Skip to main content

Advertisement

Log in

The effects of land use changes on some soil properties in İndağı Mountain Pass – Çankırı, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Understanding spatial variability of dynamic soil attributes provides information for suitably using land and avoiding environmental degradation. In this paper, we examined five neighboring land use types in Indagi Mountain Pass – Cankiri, Turkey to spatially predict variability of the soil organic carbon (SOC), bulk density (BD), textural composition, and soil reaction (pH) as affected by land use changes. Plantation, recreational land, and cropland were the lands converted from the woodland and grassland which were original lands in the study area. Total of 578 disturbed and undisturbed soil samples were taken with irregular intervals from five sites and represented the depths of 0–10 and 10–20 cm. Soil pH and BD had the lower coefficient of variations (CV) while SOC had the highest value for topsoil. Clay content showed greater CV than silt and sand contents. The geostatistics indicated that the soil properties examined were spatially dependent to the different degrees and interpolations using kriging showed the dynamic relationships between soil properties and land use types. The topsoil spatial distribution of SOC highly reflected the changes in the land use types, and kriging anticipated significant decreases of SOC in the recreational land and cropland. Accordingly, BD varied depending on the land use types, and also, the topsoil spatial distribution of BD differed significantly from that of the subsoil. Generally, BD greatly decreased in places where the SOC was relatively higher except in the grassland where overgrazing was the more important factor than SOC to determine BD. The topsoil spatial distributions of clay, silt, and sand contents were rather similar to those of the subsoil. The cropland and grassland were located on the very fine textured soils whereas the woodland and plantation were on the coarse textured soils. Although it was observed a clear pattern for the spatial distributions of the clay and sand changing with land uses, this was not the case for the silt content, which was attributed to the differences of dynamic erosional processes in the area. The spatial distribution of the soil pH agreed with that of the clay content. Soils of the cropland and grassland with higher amounts of clay characteristically binding more cations and having higher buffering capacities had the greater pH values when compared to the soils of other land uses with higher amounts of sand naturally inclined to be washed from the base cations by the rainwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, O. P., Rao, K. V. G. K., Chauhan, H. S., & Khandelwal, M. K. (1995). Geostatical analysis of soil salinity improvement with subsurface drainage system. Transactions of ASAE, 38, 1427–1433.

    Google Scholar 

  • Akman, Y. (1995). Türkiye Orman Vejetasyonu. Ank. Üniv. Fen Fakültesi Botanik Ana Bilim Dalı, 143–154, Ankara (in Turkish).

  • Anonymous (2000). Tarım İstatistikleri. D.İ.E., Ankara. (in Turkish).

  • Ardahanlioglu, O., Oztas, T., Evren, S., Yılmaz, H., & Yıldırım, Z. N. (2003). Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt- and sodium-affected areas of the Igdır plain. Journal of Arid Environments, 54, 495–503.

    Article  Google Scholar 

  • Atalay, I. (1997). Geography of Turkey (pp. 416). Izmir: Ege University Press (in Turkish).

    Google Scholar 

  • Aytuğ, B. (1970). Arkeolojik araştırmaların ışığı altında İç Anadolu Stepi, İ. Ü. Orman Fak. Dergisi, Seri A, 20(1), 127–143 (in Turkish).

    Google Scholar 

  • Bauer, A., & Black, A. C. (1994). Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58, 185–193.

    Article  Google Scholar 

  • Bernoux, M., Arrouays, D., Cerri, C. C., de Graca, P. M. A., Volkoff, B., & Trichet, J. (1998). Estimation des stocks de carbone des sols du Rondonia (Amazonie bresilienne). Etude et Gestion des Sols, 5, 31–42.

    Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In: A. Klute (Ed.), Methods of soil analysis. Part 1, 2nd edn. (pp. 363–375). Agron. Monogr. 9. Madison, WI: ASA and SSSA.

    Google Scholar 

  • Bo, S., Shenglu, Z., & Qiguo, Z. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115, 85–99.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Nowak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F. et al. (1994). Field scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Celik, I. (2005). Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil & Research, 83, 270–277.

    Article  Google Scholar 

  • Cerri, C. C., Bernoux, M., Arrouays, D., Feigl, B. J., & Piccolo, M. C. (1999). Carbon stocks in soils of the Brazilian Amazon. In: R. Lal, J. Kimble, R. Follet, & B. A. Stewart (Eds.), Global climate change and tropical ecosystems. advances in soil science (pp. 33–50). Boca Raton: CRC.

    Google Scholar 

  • Chien, Y. J., Lee, D. Y., Guo, H. Y., & Houng, K. H. (1997). Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Science, 162, 291–298.

    Article  CAS  Google Scholar 

  • Cuenca, R. H., & Amegee, K. Y. (1987). Analysis of evapotranpiration as a regionalized variable. In: D. Hillel (Ed.), Advances in Irrigation, vol. 4 (pp. 182–220). New York: Academic.

    Google Scholar 

  • Dahlgren, A. R., Bottinger, L. T., Huntington, L. G., & Amundson, A. R. (1997). Soil development along an elevation transect in the western Sierra Nevada, California. Geoderma, 78, 207–236.

    Article  Google Scholar 

  • Dhillion, N. S., Samara, J. S., Sadana, U. S., & Nielsen, D. R. (1994). Spatial variability of soil test values in a Typic Ustochrept. Soil Technology, 7, 163–171.

    Article  Google Scholar 

  • Dick, W. A., Blevins, R. L., Frye, W. W., Peters, S. E., Christenson, D. R., Pierce, F. J. et al. (1998). Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern Corn Belt. Soil and Tillage Research, 47, 235–244.

    Article  Google Scholar 

  • Elliott, E. T. (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50, 627–633.

    Article  Google Scholar 

  • Evrendilek, F., Celik, I., & Kilic, S. (2004). Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments, 59, 743–752.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In: A. Klute (Ed.), Methods of Soil Analysis. Part 1. 2nd Ed. Agron. Monogr. 9 (pp. 383–411). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Grupta, V. S. R., & Germida, J. J. (1988). Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biology & Biochemistry, 20, 777–786.

    Article  Google Scholar 

  • Hajabbasi, M. A., Lalalian, A., & Karimzadeh, R. (1997). Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant and Soil, 190, 301–308.

    Article  CAS  Google Scholar 

  • Haynes, R. J. (1999). Size and activity of the soil microbial biomass under grass and arable management. Biology and Fertility of Soils, 30, 210–216.

    Article  Google Scholar 

  • Journal, A. G., & Huijbregts, C. S. (1978). Mining geostatistics (p. 600). New York: Academic.

    Google Scholar 

  • Kosmas, C., Danalatos, N., Moustakas, N., Tsatiris, B., Kallianou, Ch., & Yassoglou, N. (1993). The impacts of parent material and landcape position on drought and biomass production of wheat under semi-arid conditions. Soil Technology, 6, 337–349.

    Article  Google Scholar 

  • Lal, R. (1987). Tropical ecology and physical edaphology. Chichester, UK: Wiley.

    Google Scholar 

  • Lark, R. M. (2002). Optimized spatial sampling of soil for estimation of the variogram by maximum likeliwood. Geoderma, 105, 49–80.

    Article  Google Scholar 

  • Mahtab, F. U., & Karim, Z. (1992). Population and agricultural land use: Towards a sustainable food production system in Bangladesh. Ambio, 21, 50–55.

    Google Scholar 

  • Mapa, R. B., & Kumaragamage, D. (1996). Variability of soil properties in a tropical alfisol used for shifting cultivation. Soil Technology, 9, 187–197.

    Article  Google Scholar 

  • Miller, M. P., Singer, P. M. J., Nielsen, D. r. (1988). Spatial variability of wheat yield and soil properties on complex hills. Soil Science Society of America Journal, 52, 1133–1141.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total Carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis. Part 2. 2nd Ed. Agron. Monogr. 9 (pp. 539–579). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd Ed. Agron. Monogr. 9. Madison, WI: ASA and SSSA.

    Google Scholar 

  • Pannatier, Y. (1996). VARIOWIN: Software for spatial data analaysis in 2D (p. 91). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Rezaei, S. A., & Gilkes, R. J. (2005). The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma, 125, 167–176.

    Article  Google Scholar 

  • Robert, P. C., Rust, R. H., & Larson, W. E. (1993). Soil specific crop management. Special Publ. Amer. Soc. Agronomy, 406.

  • Russo, D. (1984). Spatial variability considerations in salinity management. In: I. Shainberg, & J. Shalhvet (Ed.), Soil salinity under irrigation (pp. 198–216). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Samra, J. S., Singh, V. P., & Sharma, K. N. S. (1988). Analysis of spatial variability in sodic soils. 2. Point and block – kriging. Journal of the Soil Science, 145, 250–256.

    Article  Google Scholar 

  • Shepherd, T. G., Newman, R. H., Ross, C. W., & Dando, J. L. (2001). Tillage induced changes in soil structure and soil organic matter fraction. Australian Journal of Soil Research, 39, 465–489.

    Article  CAS  Google Scholar 

  • Shukla, M. K., Lal, R., & Ebinger, M. (2004). Soil quality indicators for reclaimed minesoils in southeastern Ohio. Soil Science, 169(2), 133–142.

    Article  CAS  Google Scholar 

  • Smith, R. L., & Smith, T. M. (2000). Elements of ecology, 4th ed. San Francisco: Addison Wesley Longman.

    Google Scholar 

  • Soil Survey Staff (1999). Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. USDA, Handbook No: 436, Washington DC.

  • Soil Survey Staff (1993). Soil survey manual, USDA. Handbook No: 18, Washington D.C.

  • Sparling, G. P., Shepherd, T. G., & Kettles, H. A. (1992). Changes in soil C, microbial C and aggregate stability under continuous maize and cereal cropping, and after restoration to pasture in soils from Manawatu region, New Zealand. Soil & Tillage Research, 24, 141–225.

    Article  Google Scholar 

  • Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water stable aggregates in soils. Journal of Soil Science, 33, 141–163.

    Article  CAS  Google Scholar 

  • Trangmar, B. B., Yost, R. S., Wade, M. K., Uehara, G., & Sudjadi, M. (1987). Spatial variation of soil properties and rice yield in recently cleared land. Soil Science Society of America Journal, 51, 668–674.

    Article  CAS  Google Scholar 

  • Trumbore, S. E., Davidson, E. A., de Camargo, P. B., Nepstad, D. C., & Martinelli, L. A. (1995). Below-ground cycling of carbon in forest and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9, 515–528.

    Article  CAS  Google Scholar 

  • Tsegaye, T., & Hill, R. L. (1998). Intensive tillage effects on spatial variability of soil test, plant growth, and nutrient uptake measurement. Soil Science, 163, 155–165.

    Article  CAS  Google Scholar 

  • Tsui, C. C., Chen, Z. S., & Hsieh, C. F. (2004). Relationships between soil properties and slope positioning a low land rain forest of southern Taiwan. Geoderma, 123, 131–142.

    Article  Google Scholar 

  • Uehara, G., & Gillman, G. (1981). The mineralogy, chemistry, and physics of tropical soils with variable charge clays (170 pp). Colorado: Westview.

    Google Scholar 

  • Vauclin, M., Vieira, S. R., Vachaud, G., & Nielsen, D. R. (1983). The use of cokriging with limited field soil observations. Soil Science Society of America Journal, 47, 175–184.

    Article  Google Scholar 

  • Vieira, S. R., Hatfield, J. L., Nielsen, D. R., & Biggar, J. W. (1983). Geostatistical theory and application to variability of some agronomical properties. Hilgardia, 51, 1–75.

    Google Scholar 

  • Voltz, M., & Webster, R. (1990). A comparison of kriging, cubic splins and classification for predicting soil properties from sample information. Journal of Soil Science, 41, 473–490.

    Article  Google Scholar 

  • Wali, M. K., Evrendilek, F., West, T., Watts, S., Pant, D., Gibbs, H. et al. (1999). Assessing terrestrial ecosystem sustainability: Usefulness of regional carbon and nitrogen models. Nature and Resources, 35, 20–33.

    Google Scholar 

  • Warrick, A. W., & Gardner, W. R. (1983). Crop yield as affected by spatial variations of soil and irrigation. Water Resource, 19, 181–186.

    Google Scholar 

  • Wu, R., & Tiessen, H. (2002). Effect of land use on soil degradation in Alpine grassland soil, China. Soil Science Society of American Journal, 66, 1648–1655.

    Article  CAS  Google Scholar 

  • Yost, R. S., Uehara, G., & Fox, R. L. (1982). Geostatical analysis of soil chemical properties of large land areas: I. Semivariograms. Soil Science Society of American Journal, 46, 1028–1032.

    Article  CAS  Google Scholar 

  • Zhou, H. Z., Gong, Z. T., & Lamp, J. (1996). Study on soil spatial variability. Acta Pedologia Sinica, 33, 232–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Başaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Başaran, M., Erpul, G., Tercan, A.E. et al. The effects of land use changes on some soil properties in İndağı Mountain Pass – Çankırı, Turkey. Environ Monit Assess 136, 101–119 (2008). https://doi.org/10.1007/s10661-007-9668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9668-4

Keywords

Navigation