Skip to main content
Log in

Characterizing Coral Condition Using Estimates of Three-dimensional Colony Surface Area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coral reefs provide shoreline protection, biological diversity, fishery harvests, and tourism, all values that stem from the physically-complex coral infrastructure. Stony corals (scleractinians) construct and maintain the reef through deposition of calcium carbonate. Therefore, assessment of coral reefs requires at least some measurement endpoints that reflect the biological and physical condition of stony corals. Most monitoring programs portray coral quantity as live coral cover, which is the two-dimensional proportion of coral surface to sea floor viewed from above (planar view). The absence of the third dimension, however, limits our ability to characterize coral reef value, physiology, health and sustainability. A three-dimensional (3D) approach more realistically characterizes coral structure available as community habitat and, when combined with estimates of live coral tissue, quantifies the amount of living coral available for photosynthesis, growth and reproduction. A rapid coral survey procedure that coupled 3D coral quantification with more traditional survey measurements was developed and tested in the field. The survey procedure relied on only three underwater observations – species identification, colony size, and proportion of live tissue – made on each colony in the transect. These observations generated a variety of metrics, including several based on 3D colony surface area, that are relevant to reef management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcala, M. L. R., & Vogt, H. (1997). Approximation of coral reef surfaces using standardised growth forms and video counts. In Proceedings of 8th International Coral Reef Symposium, 2, 1453–1458.

  • Aronson, R. B., Edmunds, P. J., Precht, W. F., Swanson, D. W., & Levitan, D. R. (1994). Largescale, long-term monitoring of Caribbean coral reefs: simple, quick, inexpensive techniques. Atoll Research Bulletin, 421, 1–19.

    Google Scholar 

  • Atwood, D. K., Hendee, J. C., & Mendez, A. (1992). An assessment of global warming stress on Caribbean coral reef ecosystems. Bulletin of Marine Science, 51, 118–130.

    Google Scholar 

  • Babcock, R. C. (1991). Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecological Monographs, 61, 225–244.

    Article  Google Scholar 

  • Bak, R. P. M., & Meesters, E. H. (1998). Coral population structure: the hidden information of colony size–frequency distributions. Marine Ecology Progress Series, 162, 301–306.

    Google Scholar 

  • Ben-Zion, M., Achutiv, Y. Stambler N., & Dubinsky, Z. (1991). A photographic computerized method for measurements of surface area in MilleporaSymbiosis, 10, 115–121.

    Google Scholar 

  • Brown, E., Cox, E., Jokiel, P., Rodgers, K., Smith, W., Tissot, B., Coles, S. L., & Hultquist J. (2004). Development of benthic sampling methods for the Coral Reef Assessment and Monitoring Program (CRAMP) in Hawai’i. Pacific Science, 58, 145–158.

    Article  Google Scholar 

  • Bythell, J. C., Pan, P., & Lee, J. (2001). Three-dimensional morphometric measurements of reef corals using underwater photogrammetry techniques. Coral Reefs, 20, 193–199.

    Article  Google Scholar 

  • Cocito, S., Sgorbini, S., Peirano, A., & Valle, M. (2003). 3-D reconstruction of biological objects using underwater video technique and image processing. Journal of Experimental Marine Biology and Ecology, 297, 57–70.

    Article  Google Scholar 

  • Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Riaslein, R. G., Sutton, P., & Van Den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • Crossland, C. J., Hatcher, B. G., & Smith, S. V. (1991). Role of coral reefs in global ocean production. Coral Reefs, 10, 55–64.

    Article  Google Scholar 

  • Dahl, A. L. (1973). Surface area in ecological analysis: quantification of benthic coral-reef algae. Marine Biology, 23, 239–249.

    Article  Google Scholar 

  • Davies, P. S. (1980). Respiration in some Atlantic reef corals in relation to vertical distribution and growth form. Biological Bulletin, 158, 187–194.

    Article  Google Scholar 

  • Done, T. J. (1997). Decadal changes in reef-building communities: implications for reef growth and monitoring programs. In Proceedings of the 8th International Coral Reef Symposium, 1, 411–416.

  • Done, T. J., Ogden, J. C., & Wiebe, W. J. (1996). Biodiversity and ecosystem function of coral reefs. In H. A. Mooney, J. H. Cushman, E. Medina, O. E. Sala & E. D. Schulze (Eds.), Functional roles of biodiversity: A global perspective (pp. 393–429). Chichester, England: Wiley.

    Google Scholar 

  • Ferreira, C. E. L., Goncalves, J. E. A., & Coutinho, R. (2001). Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental Biology of Fishes, 61, 353–369.

    Article  Google Scholar 

  • Fisher, W. S., Jackson, L. E., Suter, G. W., II, & Bertram, P. (2001). Indicators for human and ecological risk assessment: A U. S. Environmental Protection Agency perspective. Human and Ecological Risk Assessment, 7, 961–970.

    Article  Google Scholar 

  • Gardner, T. A., Cote, I. M., Gill, J. G., Grant, A., & Watkinson, A. R. (2003). Long-term regionwide declines in Caribbean corals. Science, 301, 958–960.

    Article  CAS  Google Scholar 

  • Gentile, J. H., & Slimak, M. W. (1992). Endpoints and indicators in ecological risk assessments. In D. H. McKenzie, D. E. Hyatt & V. J. McDonald (Eds.), Ecological indicators (pp. 1385–1397). Essex, England: Elsevier.

    Google Scholar 

  • Ginsburg, R. N. (1983). Geological and biological roles of cavities in coral reefs. In D. J. Barnes (Ed.), Perspectives on coral reefs (pp. 148–153). Townsville: Australian Institute of Marine Science.

    Google Scholar 

  • Goreau, T. F. (1963). Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Annals of the New York Academy of Sciences, 109, 127–167.

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg, O. (1988). A method for determining the surface area of corals. Coral Reefs, 7, 113–116.

    Article  Google Scholar 

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.

    Article  Google Scholar 

  • Hughes, T. P., & Jackson, J. B. C. (1985). Population dynamics and life-histories of foliaceous corals. Ecological Monographs, 55, 141–166.

    Article  Google Scholar 

  • Humann, P., & Deloach, N. (2002). Reef coral identification. Florida Caribbean Bahamas (p. 278). Jacksonville, FL: New World.

    Google Scholar 

  • Jaap, W. C., Porter, J. W., Wheaton, J., Hackett, K., Lybolt, M., Callahan, M., Tsokos, C., Yanev, G., & Dustan, P. (2000). Coral Reef Monitoring Project Executive Summary, EPA Science Advisory Panel. Available at http://floridamarine.org/features/.

  • Jackson, L. E., Kurtz, J. C., & Fisher, W. S. (Eds.) (2000). Evaluation Guidelines for Ecological Indicators, EPA/620/R-99/005, U. S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC. 10fsp. Available from http://www.epa.gov/emap/html/pubs/docs/resdocs/ecoind.html.

  • Jameson, S. C., Erdmann, M. V., Karr, J. R., & Potts, K. W. (2001). Charting a course toward diagnostic monitoring: a continuing review of coral reef attributes and a research strategy for creating coral reef indexes of biotic integrity. Bulletin of Marine Science, 69, 701–744.

    Google Scholar 

  • Jokiel, P. L., Brown, E. K., Friedlander, A., Rodgers, S. K., & Smith, W. R. (2004). Hawai’i coral reef assessment and monitoring program: spatial patterns and temporal dynamics in reef coral communities. Pacific Science, 58, 159–174.

    Article  Google Scholar 

  • Kinsey, D. W. (1977). Seasonality and zonation in coral reef productivity and calcification. In Proceedings of the 3rd International Coral Reef Symposium, 2, 383–388.

  • Kojis, B. L., & Quinn, N. J. (1985). Puberty in Goniastrea favulus, age or size limited? In Proceedings of the 5th International Coral Reef Symposium, 4, 289–294.

  • Kramer, P. A. (2003). Synthesis of coral reef health indicators for the Western Atlantic: results of the AGRRA Program (1997–2000). In J. C. Lang (Ed.), Status of coral reefs in the Western Atlantic: Results of initial surveys, Atlantic and Gulf Rapid Reef Assessment (AGRRA) program. Atoll Research Bulletin, 496, 1–58.

    Google Scholar 

  • Lang, J. C. (2003). Status of coral reefs in the Western Atlantic: results of initial surveys, Atlantic and Gulf Rapid Reef Assessment (AGRRA) program. Atoll Research Bulletin, 496, 1–630.

    Google Scholar 

  • Lewis, J. B. (1997). Abundance, distribution and partial mortality of the massive coral Siderastrea sidera on degrading coral reefs at Barbados, West Indies. Marine Pollution Bulletin, 34, 622–627.

    Article  CAS  Google Scholar 

  • Luckhurst, B. E., & Luckhurst, K. (1978). Analysis of influence of substrate variables on coral reef fish communities. Marine Biology, 49, 317–323.

    Article  Google Scholar 

  • Marsh, J. A. (1970). Primary productivity of reef-building calcareous red algae. Ecology, 51, 255–263.

    Article  Google Scholar 

  • McCormick, M. (1994). Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Marine Ecology Progress Series, 112, 87–96.

    Google Scholar 

  • Meyers, J. L., & Schultz, E. T. (1985). Tissue condition and growth rate of corals associated with schooling fish. Limnology and Oceanography, 30, 157–166.

    Article  Google Scholar 

  • Muscatine, L. (1980). Productivity of zooxanthellae. In P. G. Falkowski (Ed.), Primary productivity in the sea (pp. 381–402). New York: Plenum.

    Google Scholar 

  • Muscatine, L. (1990) The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs, 25, 1–29.

    Google Scholar 

  • Odum, E. P. (1971). Fundamentals of ecology (3rd Edn.) (p. 574). Philadelphia, USA: Saunders.

    Google Scholar 

  • Odum, H. T., & Odum, E. P. (1955). Trophic structure and productivitiy of a windward coral reef community on Eniwetok Atoll. Ecological Monographs, 25, 295–320.

    Article  Google Scholar 

  • Pernetta, J. C. (1992). Impacts of climate change and sea level rise on small island states. Global Environmental Change, 2, 19–31 (March).

    Google Scholar 

  • Porter, J. W. (1972). Patterns of species diversity in Caribbean reef corals. Ecology, 53, 745–748.

    Article  Google Scholar 

  • Reaka-Kudla, M. L. (1996). The global diversity of coral reefs: a comparison with rain forests. In M. L. Reaka-Kudla, D. E. Wilson & E. O. Wilson (Eds.), Biodiversity II: Understanding and protecting our natural resources. Washington D.C.: Joseph Henry.

    Google Scholar 

  • Risk, M. J. (1972). Fish diversity on a coral reef in the Virgin Islands. Atoll Research Bulletin, 152, 1–6.

    Google Scholar 

  • Roberts, C. M., & Ormond, R. F. G. (1987). Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series, 41, 1–8.

    CAS  Google Scholar 

  • Rogers, C. S., Gilnack, M., & Fitz, H. C., III (1983). Monitoring of coral reefs with linear transects: a study of storm damage. Journal of Experimental Marine Biology and Ecology, 66, 285–300.

    Article  Google Scholar 

  • Rogers, C. S., Garrison, G., Grober, R., Hillis, Z.-M., & Franke, M. A. (1994). Coral reef monitoring manual for the Caribbean and Western Atlantic (p. 107). Virgin Islands National Park: National Park Service.

    Google Scholar 

  • Santavy, D. L., Mueller, E., Peters, E. C., MacLaughlin, L., Porter, J. W., Patterson, K. L., Campbell, J. (2001). Quantitative assessment of coral diseases in the Florida Keys: strategy and methodology. Hydrobiologia, 460, 39–52.

    Article  Google Scholar 

  • Santavy, D. L., Summers, J. K., Engle, V. D., & Harwell, L. C. (2005). The condition of coral reefs in south Florida using coral disease as an indicator. Environmental Monitoring and Assessment, 100, 129–152.

    Article  Google Scholar 

  • Scheffers, S. R., de Goeij, J., van Duyl, F. C., & Bak, R. P. M. (2003). The cave profiler: a simple tool to describe the 3-D structure of inaccessible coral reef cavities. Coral Reefs, 22, 49–53.

    Google Scholar 

  • Sebens, K. P. (1994). Biodiversity of coral reefs: what are we losing and why? American Zoologist, 34, 115–133.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication (p. 117). Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Smith, S. V. (1978). Coral-reef area and the contributions of reefs to processes and resources of the world’s oceans. Nature, 273, 225–226.

    Article  Google Scholar 

  • Soong, K., & Lang, J. C. (1992). Reproductive integration in reef corals. Biological Bulletin, 183, 418–431.

    Article  Google Scholar 

  • Stimson, J., & Kinzie, R. A. (1991). The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. Journal of Experimental Marine Biology and Ecology, 153, 63–74.

    Article  Google Scholar 

  • Suter, G. W. II (1990). Endpoints for regional ecological risk assessments. Environment and Man, 14, 9–23.

    Google Scholar 

  • Szmant-Froelich, A. (1985). The effect of colony size on the reproductive ability of the Caribbean coral Montastraea annularis (Ellis and Solander), In Proceedings of the 5th International Coral Reef Symposium, 4, 295–300.

  • Tanner, J. E. (1995). Competition between scleractinian corals and macroalgae: an experimental investigation of coral growth, survival and reproduction, Journal of Experimental Marine Biology and Ecolgy, 190, 151–168.

    Article  Google Scholar 

  • US Environmental Protection Agency (US EPA) (1990). Biological criteria: national program guidance for surface waters, EPA-440/5-90-004. Washington, DC: US EPA, Office of Water, Office of Regulations and Standards, Criteria and Standards Division.

  • Wheaton, J., Jaap, W. C., Porter, J. W., Kosminyn, V., Hackett, K., Lybolt, M., Callahan, M.K., Kidnev, J., Kuptner, S., Tsokos, C., & Yanev, G. (2001). EPA/FKNMS Coral Reef Monitoring Project, Executive Summary 2001. In FKNMS symposium: An ecosystem report card, Washington, D.C. Available from http://www.floridamarine.org.

  • Wilkinson, C. R. (2002). Status of coral reefs of the world: 2002 (p. 40). Townsville, Australia: Australia Institute of Marine Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, W.S., Davis, W.P., Quarles, R.L. et al. Characterizing Coral Condition Using Estimates of Three-dimensional Colony Surface Area. Environ Monit Assess 125, 347–360 (2007). https://doi.org/10.1007/s10661-006-9527-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9527-8

Keywords

Navigation