A Multilevel Modeling Approach to Assessing Regional and Local Landscape Features for Lake Classification and Assessment of Fish Growth Rates

Abstract

The ecoregion and watershed frameworks are landscape-based classifications that have been used to group waterbodies with respect to measures of community structure; however, they have yet to be evaluated for grouping lakes for demographic characteristics of fish populations. We used a multilevel modeling approach to determine if variability in mean fish length at age could be partitioned by ecoregions and watersheds. For the ecoregions analysis, we then examined if within-ecoregion variability could be explained by local water quality and lake morphometry characteristics. We used data from agency surveys conducted during 1974–1984 for age 2 and 3 fish of seven common warm and coolwater fish species. Variance in mean length at age between ecoregions for all species was not significant, and between-watershed variance estimates were only significant in 3 out of 14 analyses; however, the total amount of variation between watersheds was very small (ranging from 1.8% to 3.7% of the total variance), indicating that ecoregions and watersheds were ineffective in partitioning variability in mean length at age. Within ecoregions, water quality and lake morphometric characteristics accounted for 2%–23% of the variation in mean length at age. Measures of lake productivity were the most common significant covariates, with mean length at age increasing with increasing lake productivity. Much of the variability in mean length at age was not accounted for, suggesting that other local factors such as biotic interactions, fish density, and exploitation are important. The results indicate that the development of an effective regional framework for managing inland lakes will require a substantial effort to understand sources of demographic variability and that managers should not rely solely on ecoregions or watersheds for grouping lakes with similar growth rates.

This is a preview of subscription content, log in to check access.

References

  1. Albert, D. A. (1995). Regional landscape ecosystems of Michigan, Minnesota, and Wisconsin: A working map and classification. USDA Forest Service North Central Forest Experiment Station General Technical Report (NC-178). Retrieved from http://www.treesearch.fs.fed.us/pubs/10242).

  2. Bailey, R. G. (1983). Delineations of ecosystem regions. Environmental Management, 7, 365–373.

    Article  Google Scholar 

  3. Barbour, C. D., & Brown, J. H. (1974). Fish species diversity in lakes. American Naturalist, 108, 473–489.

    Article  Google Scholar 

  4. Brown, R. S., & Marshall, K. (1996). Ecosystem management in state governments. Ecological Applications, 6, 721–723.

    Article  Google Scholar 

  5. Casselman, J. M., & Lewis, C. A. (1996). Habitat requirements of northern pike (Esox lucius). Canadian Journal of Fisheries and Aquatic Sciences, 53, 161–174.

    Article  Google Scholar 

  6. Cheruvelil, K. S. (2004). Examining lakes at multiple spatial scales: Predicting fish growth, macrophyte cover and lake physio-chemical variables. PhD thesis, Michigan State University.

  7. Diehl, S., & Eklöv, P. (1995). Effects of piscivore-mediated habitat use on resources, diet, and growth of perch. Ecology, 76, 1712–1726.

    Article  Google Scholar 

  8. Dodson, S. (1992). Predicting crustacean zooplankton species richness. Limnology and Oceanography, 37, 848–856.

    Article  Google Scholar 

  9. Drake, M. T., Claussen, J. E., Philipp, D. P., & Pereira, D. L. (1997). A comparison of bluegill reproductive strategies and growth among lakes with different fishing intensities. North American Journal of Fisheries Management, 17, 496–507.

    Article  Google Scholar 

  10. Eklöv, P., & Hamrin, S. F. (1989). Predatory efficiency and prey selection: Interactions between pike Esox lucius, perch Perca fluviatilis, and rudd Scardinus erythropthalmus. Oikos, 56, 149–156.

    Article  Google Scholar 

  11. Gerritsen, J., Barbour, M. T., & King, K. (2000). Apples, oranges, and ecoregions: On determining pattern in aquatic assemblages. Journal of the North American Benthological Society, 19, 487–496.

    Article  Google Scholar 

  12. Greene, J. C., & Maceina, M. J. (2000). Influence of trophic state on spotted bass and largemouth bass spawning time and age-0 population characteristics in Alabama reservoirs. North American Journal of Fisheries Management, 20, 100–108.

    Article  Google Scholar 

  13. Hansen, M. J., Boisclair, D., Brandt, S. B., Hewett, S. W., Kitchell, J. F., Lucas, M. C., et al. (1993). Applications of bioenergetics models to fish ecology and management: Where do we go from here? Transactions of American Fisheries Society, 122, 1019–1030.

    Article  Google Scholar 

  14. Hawkins, C. P., & Vinson, M. R. (2000). Weak correspondence between landscape classification and stream invertebrate assemblages: Implications for bioassessment. Journal of the North American Benthological Society, 19, 501–517.

    Article  Google Scholar 

  15. Hayes, D., Baker, E., Bednarz, R., Borgeson, D. Jr., Braunscheidel, J., Breck, J., et al. (2003). Developing a standardized sampling program: The Michigan experience. Fisheries, 28, 18–25.

    Google Scholar 

  16. Huckins, C. J. F. (1997). Functional linkages among morphology, feeding performance, diet, and competitive ability in molluscivorous sunfish. Ecology, 78, 2401–2414.

    Article  Google Scholar 

  17. Jackson, D. A., Peres-Neto, P. R., & Olden, J. D. (2001). What controls who is where in freshwater fish communities – The roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58, 157–170.

    Article  Google Scholar 

  18. Jenerette, G. D., Lee, J., Waller, D. W., & Carlson, R. E. (2002). Multivariate analysis of the ecoregion delineation for aquatic systems. Environmental Management, 29, 67–75.

    Article  Google Scholar 

  19. Johnson, R. K. (2000). Spatial congruence between ecoregions and littoral macroinvertebrate assemblages. Journal of the North American Benthological Society, 19, 475–486.

    Article  Google Scholar 

  20. Kitchell, J. F., Stewart, D. J., & Weininger, K. (1977). Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). Journal of the Fisheries Research Board of Canada, 34, 1922–1935.

    Google Scholar 

  21. Kratz, T. K., Webster, K. E., Bowser, C. J., Magnuson, J. J., & Benson, B. J. (1997). The influence of landscape position on lakes in northern Wisconsin. Freshwater Biology, 37, 209–217.

    Article  Google Scholar 

  22. McCauley, R. W., & Kilgour, D. M. (1990). Effect of air temperature on growth of largemouth bass in North America. Transactions of the American Fisheries Society, 119, 276–281.

    Article  Google Scholar 

  23. McCormick, F. H., Peck, D. V., & Larsen, D. P. (2000). Comparison of geographic classification schemes for Mid-Atlantic stream fish assemblages. Journal of the North American Benthological Society, 19, 385–404.

    Article  Google Scholar 

  24. Michigan Department of Natural Resources (MDNR). (2003). Digital water atlas version 1. Institute for Fisheries Research, GIS Working Group. Michigan: Ann Arbor, 48104.

  25. Mittelbach, G. G. (1988). Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates. Ecology, 69, 614–623.

    Article  Google Scholar 

  26. Mittelbach, G. G., & Chesson, P. L. (1987). Predation risk: Indirect effects on fish populations. In W. C. Kerfoot, & A. Sih (Eds.), Predation: Direct and indirect impacts on aquatic communities (pp. 315–332). Hanover, New Hampshire: University Press of New England.

    Google Scholar 

  27. Mittlebach, G. G., & Osenberg, C. W. (1992). Stage-structured interactions in bluegill: Consequences of adult resource variation. Ecology, 74, 2381–2394.

    Article  Google Scholar 

  28. Newall, P. R., & Magnuson, J. J. (1999). The importance of ecoregion versus drainage area on fish distributions in the St. Croix River and its Wisconsin tributaries. Environmental Biology of Fishes, 55, 245–254.

    Article  Google Scholar 

  29. Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125.

    Article  Google Scholar 

  30. Omernik, J. M. (2003). The misuse of hydrologic unit maps for extrapolation, reporting, and ecosystem management. Journal of the American Water Resources Association, 39, 563–573.

    Google Scholar 

  31. Omernik, J. M., & Bailey, R. G. (1997). Distinguishing between watersheds and ecoregions. Journal of the American Water Resources Association, 33, 935–949.

    Google Scholar 

  32. Omernik, J. M., & Kinney, A. J. (1983). An improved technique for estimating mean depth of lakes. Water Research, 17, 1603–1607.

    Article  Google Scholar 

  33. Pan, Y., Stevenson, R. J., Hill, B. H., & Herlihy, A. T. (2000). Ecoregions and benthic diatom assemblages in the Mid-Atlantic highlands streams, USA. Journal of the North American Benthological Society, 19, 518–540.

    Article  Google Scholar 

  34. Pazzia, I., Trudel, M., Ridgway, M., & Rasmussen, J. B. (2002). Influence of food web structure on the growth and bioenergetics of lake trout (Salvelinus namaycush). Canadian Journal of Fisheries and Aquatic Sciences, 59, 1593–1605.

    Article  Google Scholar 

  35. Persson, L., Andersson, J., Wahlström, E., & Eklöv, P. (1996). Size-specific interactions in lake systems: Predator gape limitation and prey growth rate and mortality. Ecology, 77, 900–911.

    Article  Google Scholar 

  36. Peters, R. H., Armesto, J. J., Boeken, B., Cole, J. J., Driscoll, C. T., Duarte, C. M., et al. (1991). On the relevance of comparative ecology to the larger field of ecology. In J. Cole, G. Lovett, & S. Findlay (Eds.), Comparative analyses of ecosystems: Patterns, mechanisms, and theories. Berlin Heidelberg New York: Springer.

    Google Scholar 

  37. Pierce, R. B., Tomcko, C. M., & Margenau, T. L. (2003). Density dependence in growth and size structure of northern pike populations. North American Journal of Fisheries Management, 23, 331–339.

    Article  Google Scholar 

  38. Power, M. R., & van den Heuvel, M. R. (1999). Age-0 yellow perch growth and its relationship to temperature. Transactions of the American Fisheries Society, 128, 687–700.

    Article  Google Scholar 

  39. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand Oaks, California: Sage.

    Google Scholar 

  40. Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada, 191, 382.

  41. Riera, J. L., Magnuson, J. J., Kratz, T. K., & Webster, K. E. (2000). A geomorphic template for the analysis of lake districts applied to the Northern Highland Lake District, Wisconsin, U.S.A. Freshwater Biology, 43, 301–318.

    Article  Google Scholar 

  42. Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156.

    Article  Google Scholar 

  43. Sandin, L., & Johnson, R. K. (2000). Ecoregions and benthic macroinvertebrate assemblages of Swedish streams. Journal of the North American Benthological Society, 19, 462–474.

    Article  Google Scholar 

  44. Santoul, F., Soulard, A., Figuerola, J., Céréghino, R., & Mastrorillo, S. (2004). Environmental factors influencing local fish species richness and differences between hydroecoregions in south-western France. International Review of Hydrobiology, 89, 79–87.

    Article  Google Scholar 

  45. SAS Institute Inc. (2000). SAS/STAT user’s guide. Cary, North Carolina: SAS Institute Inc.

    Google Scholar 

  46. Seaber, P. R., Kapinos, F. P., & Knapp, G. L. (1987). Hydrologic Unit Map, USGS Water-Supply Paper 2294.

  47. Shuter, B. J., Jones, M. L., Korver, R. M., & Lester, N. P. (1998). A general, life history based model for regional management of fish stocks: the inland lake trout (Salvelinus namaycush) fisheries in Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 55, 2161–2177.

    Article  Google Scholar 

  48. Tomcko, C. M., & Pierce, R. B. (2001). The relationship of bluegill growth, lake morphometry, and water quality in Minnesota. Transactions of the American Fisheries Society, 130, 317–321.

    Article  Google Scholar 

  49. Van Sickle, J., & Hughes, R. M. (2000). Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society, 19, 370–384.

    Article  Google Scholar 

  50. Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., et al. (1999). The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257–300.

    Article  Google Scholar 

  51. Weatherley, A. H. (1972). Growth and ecology of fish populations. London: Academic.

    Google Scholar 

  52. Werner, E. E., & Hall, D. J. (1977). Competition and habitat shift in two sunfishes (Centrarchidae). Ecology, 58, 869–876.

    Article  Google Scholar 

  53. Wetzel, R. G. (2001). Limnology lake and river ecosystems (3rd ed.) San Diego, California 92101: Academic.

    Google Scholar 

  54. Zweifel, R. D., Hayward, R. S., & Rabeni, C. F. (1999). Bioenergetics insight into black bass distribution shifts in Ozark border region streams. North American Journal of Fisheries Management, 19, 192–197.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tyler Wagner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wagner, T., Bremigan, M.T., Cheruvelil, K.S. et al. A Multilevel Modeling Approach to Assessing Regional and Local Landscape Features for Lake Classification and Assessment of Fish Growth Rates. Environ Monit Assess 130, 437–454 (2007). https://doi.org/10.1007/s10661-006-9434-z

Download citation

Keywords

  • Ecoregion
  • Watershed
  • Classification
  • Fish growth
  • Mean length at age
  • Water quality