Skip to main content
Log in

Bioconcentration and Phytotoxicity of Cd in Eichhornia crassipes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Plants of Eichhornia crassipes grown at various levels of cadmium ranging from 0.1 to 100 μg ml−1 accumulated Cd in a concentration and duration dependent manner. At all levels, Cd accumulation by various plant tissues followed the order roots shoot leaves. Approximately 80% of total Cd was accumulated by plant at highest concentration (100 μg ml−1) used in the experiment. Cadmium induced phytotoxicity appears at 25.0 μg ml−1 resulting into reduced levels of chlorophyll, protein and in vivo nitrate reductase activity of the plant. However, a slight induction of these physiological variables was obtained at lowest Cd (0.1 μg ml−1) concentration. In contrast, carotenoid content increased at highest Cd concentration i.e., 100 μg ml−1. Similar effects at low and high levels of Cd was obtained with respect to mitotic index and micronuclei in root meristem of the plant. It could be inferred that Cd toxicity in plant is differential depending upon the low and high concentration of Cd in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon, D. I. (1949). Copper enzymes in violated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  Google Scholar 

  • Das, S., & Jana, B. B. (1999). Dose-dependent uptake and Eichhornia-induced elimination of cadmium in various organs of the freshwater mussel, Lamellidens marginalis (Linn.). Ecological Engineering, 12, 207–229.

    Article  Google Scholar 

  • Delgado, M., Bigeriego, M., & Guardiola, E. (1993). Uptake of Zn, Cr and Cd by water hyacinths. Water Research, 27, 269.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (1975). Test methods for assessing the effect of chemical son plants. Recommended test protocols: approach for evaluation of toxicity to aquatic vascular plants. In R. Rubinstein & J. Smith (Eds.), EPA 560-17-7-5-008, final report (pp. 3-117–3-120). Washington, District of Columbia: US Environmental Protection Agency.

    Google Scholar 

  • Francis, E. C., Ralph, W. S., & Fred, L. S. (1982). Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichhornia crassipes. Environmental Pollution, 27, 31–36.

    Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. New York: Wiley.

    Google Scholar 

  • Gonzalez, H., Martin, L., & Mirta, O. (1989). Water hyacinth as indicator of heavy metal pollution in the tropics. Bulletin of Environmental Contamination and Toxicology, 43, 910–914.

    Article  CAS  Google Scholar 

  • Jamil, K., Madhavendra, S. S., Jamil, M. Z., & Rao, P. V. R. (1987). Studies on water hyacinth as a biological filter for treating contaminants from agricultural wastes and industrial effluents. Journal of Environmental Science and Health, B22, 103–112.

    CAS  Google Scholar 

  • Kenneth, E., Pallett, K. E., & Young, A. J. (2000). Carotenoids. Antioxidants in higher plants. In Ruth G. Alscher & John L. Hess (Eds.), (pp. 60–81). CRC Press.

  • Krishnamurti, C. R., & Vishwanathan, P. (1991). Cadmium in the Indian environment and its human health implications. In C. R. Krishnamurti & P. Vishwanathan (Eds.), Toxic metals in the Indian environment (pp. 75–95). New Delhi: McGraw-Hill.

    Google Scholar 

  • Lowry, O. H., Rasebraugh, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Maria, A. M., Maria, V. D., & Noemi, L. S. (2001). Cadmium uptake by floating macrophytes. Water Research, 35(11), 2629–2634.

    Article  Google Scholar 

  • Mazen, A. M. A., & El Maghraby, O. M. O. (1997). Accumulation of cadmium, lead and strontium, and a role of calcium oxalate in water hyacinth tolerance. Biologia Plantarum, 40(3), 411–417.

    Article  CAS  Google Scholar 

  • Muramoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bulletin of Environmental Contamination and Toxicology, 30, 170–177.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pachyan, J. M. (1988). Quantitative assessment of worldwide contamination of air water and soil by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Panda, B. B., Das, B. L., Lenka, M., & Panda, K. K. (1988). Water hyacinth (Eichhornia crassipes) to biomonitor genotoxicity of low levels of mercury in aquatic environment. Mutation Research, 206, 275–279.

    Article  CAS  Google Scholar 

  • Panda, K. K., Lenka, M., & Panda, B. B. (1989). Allium micronucleus (MNC) assay to assess bioavailability, bioconcentration and genotoxicity of mercury from solid waste deposits of a chloralkali plant, and antagonism of L. cysteine. Science of the Total Environment, 79, 25–36.

    Article  CAS  Google Scholar 

  • Price, N. M., & Morel, F. M. M. (1990). Cd and cobalt substitution for zinc in a marine diatom. Nature, 344, 658–660.

    Article  CAS  Google Scholar 

  • Rai, U. N., Gupta, M., Tripathi, R. D., & Chandra, P. (1998). Cadmium regulated nitrate reductase activity in Hydrilla verticillata (l.f.) Royle. Water, Air and Soil Pollution, 106, 171–177.

    Article  CAS  Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecological Engineering, 157, 1–8.

    Google Scholar 

  • Rai, U. N., Tripathi, R. D., Sinha, S., & Chandra, P. (1995). Chromium and cadmium bioaccumulation and toxicity in Hydrilla verticillata (l.f.) Royle and Chara corallina Wildenow. Journal of Environmental Science and Health, A30(3), 537–551.

    Article  CAS  Google Scholar 

  • Rosas, I., Carbajal, M. E., Gomez-Arroyo, S., Belmont, R., & Villalobos-Pietrini, R. (1984). Cytogenetic effect of cadmium accumulation on water hyacinth (Eichhornia crassipes). Environmental Research, 33, 386–395.

    Article  CAS  Google Scholar 

  • Snell, F. D., & Snell, C. T. (1949). In colorimetric methods of analysis, Vol. II (pp. 785) 3rd edn. Princeton: Van Nostrand.

    Google Scholar 

  • Srivastava, H. S. (1974). In vivo activity of nitrate reductase in maize seedlings. Indian Journal of Biochemistry & Biophysics, 11, 230–232.

    CAS  Google Scholar 

  • Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I., & Sperwood, R. P. (1985). The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum, 63, 293–298.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. N. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, K.K., Rai, U.N. & Prakash, O. Bioconcentration and Phytotoxicity of Cd in Eichhornia crassipes . Environ Monit Assess 130, 237–243 (2007). https://doi.org/10.1007/s10661-006-9392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9392-5

Keywords

Navigation