Skip to main content
Log in

Atmospheric Monitoring at Abandoned Mercury Mine Sites in Asturias (NW Spain)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mercury concentrations are usually significant in historic Hg mining districts all over the world, so the atmospheric environment is potentially affected. In Asturias, northern Spain, past mining operations have left a legacy of ruins and Hg-rich wastes, soils and sediments in abandoned sites. Total Hg concentrations in the ambient air of these abandoned mine sites have been investigated to evaluate the impact of the Hg emissions. This paper presents the synthesis of current knowledge about atmospheric Hg contents in the area of the abandoned Hg mining and smelting works at ‘La Peña–El Terronal’ and La Soterraña, located in Mieres and Pola de Lena districts, respectively, both within the Caudal River basin. It was found that average atmospheric Hg concentrations are higher than the background level in the area (0.1 μg Nm−3), reaching up to 203.7 μg Nm−3 at 0.2 m above the ground level, close to the old smelting chimney at El Terronal mine site. Data suggest that past Hg mining activities have big influences on the increased Hg concentrations around abandoned sites and that atmospheric transfer is a major pathway for Hg cycling in these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckvar, N., Field, J., Salazar, S., & Hoff, R. (1998). Contaminants in aquatic habitats at hazardous waste sites; Mercury, NOOA Technical Memorandum NOS ORCA 100, National Ocean Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA, 74pp.

  • Bergan, T., Gallardo, L., & Rohde, H. (1999). Mercury in the global troposphere – A three-dimensional model study. Atmospheric Environment, 33, 1575–1585.

    Article  CAS  Google Scholar 

  • Biester, H., Gosar, M., & Covelli, S. (2000). Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environmental Science & Technology, 34(16), 3330–3336.

    Article  CAS  Google Scholar 

  • Biester, H., Gosar, M., & Müller, G. (1999). Mercury speciation in tailings of the Idrija mercury mine. Journal of Geochemical Exploration, 65(3), 195–204.

    Article  CAS  Google Scholar 

  • Bloom, N. S., & Fitzgerald, W. F. (1988). Determination of volatile species at the pictogram level by low-temperature gas chromatography with cold vapour atomic fluorescence detection. Analytica Chimica Acta, 208, 151–161.

    Article  CAS  Google Scholar 

  • Bloom, N. S., & Watras, C. J. (1989). Observations of methylmercury in precipitation. Science of the Total Environment, 87/88, 199–207.

    Article  Google Scholar 

  • Carpi, A., & Lindberg, S. E. (1997). Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environmental Science & Technology, 31, 2085–2091.

    Article  CAS  Google Scholar 

  • Dory, A. (1894). Le mercure dans las Asturies. Revue Universelle des Mines, de la Metallurgie, des travaux publics, des sciences et des, 32, 145–210.

    Google Scholar 

  • Ebinghaus, R., Tripathi, R. M., Wallschläger, D., & Lindberg, S. E. (1999). Natural and anthropogenic mercury sources and their impact on the air–surface exchange of mercury on regional and global scales. In R. Ebinghaus, et al. (Eds.), Mercury contaminated sites (pp. 3–50). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Engle, M. A., Gustin, M. S., & Zhang, H. (2001). Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric Environment, 35, 3987–3997.

    Article  CAS  Google Scholar 

  • Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johson, D. W., Lindberg, S. E., & Coleman, J. S. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37, 1613–1622.

    Article  CAS  Google Scholar 

  • Ferrara, R. (1999). Mercury mines in Europe: Assessment of emissions and environmental contamination. In R. Ebinghaus et al. (Eds.), Mercury contaminated sites (pp. 51–72). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Ferrara, R., & Maserti, B. E. (1994). Mercury degassing rate in some Mediterranean areas, In: Proceedings of the Int. Conf. Mercury as a global pollutant’. Whistler BC, Abstract Section 8B.

  • Ferrara, R., Maserti, B. E., Andersson, M., Edner, H., Ragnarson, P., & Svanberg, S. (1997). Mercury degassing rate from mineralized areas in the Mediterranean basin. Water, Air and Soil Pollution, 93, 59–66.

    CAS  Google Scholar 

  • Ferrara, R., Maserti, B. E., Andersson, M., Edner, H., Ragnarson, P., Svanberg, S., et al. (1998). Atmospheric mercury concentrations and fluxes in the Almadén district. Atmospheric Environment, 32, 3897–3904.

    Article  CAS  Google Scholar 

  • Ferrara, R., Maserti, B. E., Edner, H., Ragnarson, P., Svanberg, S., & Wallinder, E. (1991). Mercury in abiotic and biotic compartments of an area affected by a geological anomaly (Mt. Amiata, Italy). Water, Air and Soil Pollution, 56, 219–233.

    Article  CAS  Google Scholar 

  • Ferrara, R., Maserti, B. E., Edner, H., Ragnarson, P., Svanberg, S., & Wallinder, E. (1992). Mercury emissions into the atmosphere from a chlor-alkali complex measured with the Lidar technique. Atmospheric Environment, 26A, 1253–1258.

    CAS  Google Scholar 

  • Ferrara, F., Petrodino, A., Maserti, E., Seritti, A., & Barghigiani, C. (1982). The biogeochemical cycle of mercury in the Mediterranean. Part II. Mercury in the atmosphere, aerosol and in rain of a northern Tyrrhenian area. Environmental Technology Letters, 3, 449–456.

    Article  CAS  Google Scholar 

  • Gosar, M., Pirc, S., & Bidovec, M. (1997a). Mercury in the Idrijca river sediments as a reflection of mining and smelting activities of the Idrija mercury mine. Journal of Geochemical Exploration, 58(2–3), 125–131.

    Article  CAS  Google Scholar 

  • Gosar, M., Pirc, S., Sajn, R., Bidovec, M., Mashyanov, N. R., & Sholupov, S. E. (1997b). Distribution of mercury in the atmosphere over Idrija, Slovenia. Environmental Geochemistry Health, 19(3), 101–110.

    Article  CAS  Google Scholar 

  • Gray, J. E. (2003). Leaching, transport, and methylation of mercury in and around abandoned mercury mines in the Humboldt River Basin and surrounding areas, Nevada, In: L. L. Stillings (Ed.), Geoenvironmental investigations of the Humboldt River Basin, Northern Nevada, U.S. Geol. Surv. Bull. 2210-C. 15pp.

  • Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environmental Science & Technology, 38(16), 4285–4292.

    Article  CAS  Google Scholar 

  • Guey-Ron, S., & Mason, R. P. (2001). An examination of methods for the measurements of reactive gaseous mercury in the atmosphere. Environmental Science & Technology, 35, 1209–1216.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Biester, H., & Kim, C. S. (2002). Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment, 36, 3241–3454.

    Article  CAS  Google Scholar 

  • Gustin, S. M., Coolaugh, M. F., Engle, M. A., Fitzgerald, B. C., Keislar, R. E., Lindberg, S. E., et al. (2003). Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environmental Geology, 43, 339–351.

    CAS  Google Scholar 

  • Gustin, M. S., Lindberg, S. E., Austin, K., Coolbaugh, M., Vette, A., & Zhang, H. (2000). Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment, 259, 61–72.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Lindberg, S., Marsik, F., Casimir, A., Ebinghaus, R., Edwards, G., et al. (1999). Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces. Journal of Geophysical Research, 104, 21831–21844.

    Article  CAS  Google Scholar 

  • Gutiérrez-Claverol, M., & Luque, C. (1993). Recursos del subsuelo de Asturias. Oviedo, Spain: Servicio de Publicaciones, University of Oviedo, 374 pp.

  • Higueras, P., Oyarzun, R., Biester, H., Lillo, J., & Lorenzo, S. (2003). A first insight into mercury distribution and speciation in the Almadén mining district, Spain. Journal of Geochemical Exploration, 80, 95–104.

    Article  CAS  Google Scholar 

  • Higueras, P., Oyarzun, R., Lillo, J., Sánchez-Hernández, J. C., Molina, J. A., Esbrí, J. M., et al. (2006). The Almaden district (Spain): Anatomy of one of the world’s largest Hg-contaminated sites. Science of the Total Environment, 356(1–3), 112–124.

    Article  CAS  Google Scholar 

  • Horvat, M., Covelli, S., Faganeli, J., Logar, M., Mandi, V., Rajar, R., et al. (1999). Mercury in contaminated coastal environments; a case study: The Gulf of Trieste. Science of the Total Environment, 237/238, 43–56.

    Article  CAS  Google Scholar 

  • Kocman, D., Horvat, M., & Kotnik, J. (2004). Mercury fractionation in contaminated soils from the Idrija mercury mine region. Journal of Environmental Monitoring, 6(8), 696–703.

    Article  CAS  Google Scholar 

  • Kotnik, J., Horvat, M., & Dizdarevic, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmospheric Environment, 39, 7570–7579.

    Article  CAS  Google Scholar 

  • Lacerda, L. C. (1997). Global mercury emissions from gold and silver mining. Water, Air and Soil Pollution, 97, 209–221.

    CAS  Google Scholar 

  • Lacerda, L. D., & Salomons, W. (1999). Mercury contamination from new gold and silver mine tailings. In R. Ebinghaus et al. (Eds.), Mercury contaminated sites (pp. 73–87). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Landis, M. S., Vette, A. F., & Keeler, G. J. (2002). Atmospheric mercury in the Lake Michigan Basin: Influence of the Chicago/Gary urban area. Environmental Science & Technology, 36, 4508–4517.

    Article  CAS  Google Scholar 

  • Lee, D. S., Dollard, G. J., & Pepler, S. (1998). Gas-phase mercury in the atmosphere of the United Kingdom. Atmospheric Environment, 32, 855–864.

    Article  CAS  Google Scholar 

  • Lindqvist, O., Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, G., et al. (1991). Mercury in the Swedish environment: Recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution, 55, 23–32.

    Article  Google Scholar 

  • Loredo, J. (2000). Historic unreclaimed mercury mines in Asturias (Northwestern Spain): Environmental approaches, In: US Environmental Protection Agency, Assessing and Managing Mercury form Historic and Current Mining Activities, San Francisco, USA, pp. 175–180.

  • Loredo, J., Alvarez, R., & Ordóñez, A. (2005). Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain). Science of the Total Environment, 340(1–3), 247–260.

    Article  CAS  Google Scholar 

  • Loredo, J., Luque, C., & García Iglesias, J. (1988). Conditions of formation of mercury deposits from the Cantabrian Zone (Spain). Bulletin de Minéralogie, 111, 393–400.

    CAS  Google Scholar 

  • Loredo, J., Ordóñez, A., Charlesworth, S., & De Miguel, E. (2003). Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environmental Geochemistry and Health, 25(3): 307–323.

    Article  CAS  Google Scholar 

  • Loredo, J., Ordóñez, A., Gallego, J., Baldo, C., & García Iglesias, J. (1999). Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). Journal of Geochemical Exploration, 67, 377–390.

    Article  CAS  Google Scholar 

  • Loredo, J., Ordóñez, A., & Pendás, F. (2002a). Hydrogeological and geochemical interactions of adjoining mercury and coal mine spoil heaps in the Morgao catchment (Mieres, NW Spain). In P. L. Younger & N. S. Robins (Eds.), Mine water hydrogeology and geochemistry. UK: Geological Society Special Publications.

    Google Scholar 

  • Loredo, J., Ordóñez, A., & Pendás, F. (2002b). Soil pollution related to historic mercury mining in northern Spain and treatment technologies. Environmental Science and Pollution Research International, Spec. Issue, 3, 79.

    Google Scholar 

  • Luque, C. (1985). Las mineralizaciones de mercurio de la Cordillera Cantábrica. PhD Thesis, University of Oviedo, Oviedo, Spain.

  • Luque, C. (1992). El mercurio en la Cordillera Cantábrica. In García Guinea & Martínez Frías (Eds.), Recursos minerales de España Textos Universitarios no. 15 (pp. 803–826). Madrid: C.S.I.C.

    Google Scholar 

  • Luque, C., García Iglesias, J., & García Coque, P. (1989). Características geoquímicas de los minerales de mercurio de la Cordillera Cantábrica (NW de España). Trabajos de Geologia, 18, 3–11.

    Google Scholar 

  • Luque, C., Martínez García, E., García-Iglesias, J., & Gutiérrez-Claverol, M. (1991). Mineralizaciones de Hg–As–Sb en el borde occidental de la cuenca carbonífera central de Asturias y su posible relación con la tectónica: el yacimiento de El Terronal-La Peña. Boletin Sociedad Espanola de Mineralogia, 14, 161–170.

    Google Scholar 

  • Maserti, B. E., Ferrara, R., Panichi, M. A., & Storni, M. (1996). Mercury concentration in plants and soil of the cinnabar mineralized area of Almadén (Spain). In: Proceedings of the 4th Int. Conf. on mercury as a global pollutant, August 1996, Hamburg, Germany, 140.

  • Mason, R. P., Fitzgerald, W. F., Morel, F. M. M. (1994). The biogeochemical cycling of mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198.

    Article  CAS  Google Scholar 

  • Miklavcic, V. (1999). Mercury in the town of Idrija (Slovenia) after 500 years of mining and smelting, In R. Ebinghaus et al (Eds.), Mercury contaminated sites (pp. 259–269). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Moreno, T., Higueras, P., Jones, T., McDonald, I., & Gibbons, W. (2005). Size fractionation in mercury-bearing airborne particles (HgPM10) at Almadén, Spain: Implications for inhalation hazards around old mines, Atmospheric Environment, 39, 6409–6419.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., & Pirone, N. (2001). European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmospheric Environment, 35, 2987–2996.

    Article  CAS  Google Scholar 

  • Paillete, A. (1844). Apuntes históricos sobre la minería antigua del Principado de Asturias. Oviedo, Spain: Benito González y Cía.

    Google Scholar 

  • Palinkas, L. A., Pirc, S., Miko, S. F., Durn, G., Namjesnik, K., & Kapelj, S. (1995). The Idrija mercury mine, Slovenia, a semi-millennium of continuous operation: An ecological impact. Environmental Toxicology Assessment 317–341.

  • Pirrone, N. (2001). Mercury research in Europe: Towards the preparation of the EU air quality directive. Atmospheric Environment, 35, 2979–2986.

    Article  CAS  Google Scholar 

  • Pirrone, N., Ferrara, R., Hedgecock, I. M., Kallos, G., Mamane, Y., Munthe, J., et al. (2003). Dynamic processes of mercury over the Mediterranean region: Results from the Mediterranean atmospheric mercury cycle system (MAMCS) project. Atmospheric Environment, 37(Suppl. No. 1), S21–S39.

    Article  CAS  Google Scholar 

  • Pirrone, N., Keeler, G. J., & Nriagu, J. O. (1996). Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30, 2981–2987.

    Article  CAS  Google Scholar 

  • Pirrone, N., Munthe, J., Barregard, L., Ehrlich, H. C., Petersen, G., Fernández, R., et al. (2001). Ambient air pollution by mercury (Hg) – Position Paper, Office for Official Publications of the European Communities.

  • Sánchez, D. M., Quejido, A. J., Fernandez, M., Hernández, C., Schmid, T., Millán, R., et al. (2005). Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Analytical Bioanalytical Chemistry, 381(8), 1507–1513.

    Article  CAS  Google Scholar 

  • Schlüter, K. (2000). Review: Evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology, 39, 249–271.

    Article  Google Scholar 

  • Schroeder, W., & Munthe, J. (1998). Atmospheric mercury. An overview. Atmospheric Environment, 32, 5, 809–822.

    Article  CAS  Google Scholar 

  • Siegel, S. M., & Siegel, B. Z. (1984). First estimate of annual mercury flux at the Kilauea main vent. Nature, 309, 146–147.

    Article  CAS  Google Scholar 

  • Sladek, C., & Gustin, M. S. (2000). Assessing the mobility of mercury in mine waste, In: Assessing and managing mercury form historic and current mining activities, San Francisco, USA, pp. 75–77.

  • Sloss, L. L. (1995). Mercury emissions and effects – the role of the coal IEAPER/19. London, UK: IEA Coal Research, pp. 39.

    Google Scholar 

  • Turner, R. R., & Southworth, G.R. (1999). Mercury-contaminated industrial and mining sites in North America: An overview with selected case studies, In R. Ebinghaus et al (Eds.), Mercury contaminated sites (pp. 89–112). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • UNECE (1998). Protocol on Heavy Metals. Convention on Long-range Transboundary Air Pollution, United Nations Economic Commission for Europe.

  • UNEP Chemicals. (2002). Global mercury assessment, United Nations Environmental Programme, Chemicals, Inter-Organization Programme for the Sound Managements of Chemicals, Geneva, Switzerland, 258pp.

  • USEPA (1997). Mercury study report to Congress, 8 volumes. www.epa.gov/oar/mercury/html.

  • USEPA (2001). Workshop on mercury in products, processes, waste and the environment: Eliminating, reducing and managing risks from non-combustion sources, EPA/625/R-00/014. Washington, USA: Environmental Protection Agency.

    Google Scholar 

  • USEPA (2002). Workshop on the fate, transport, and transformation of mercury in aquatic and terrestrial environments, EPA/625/R-02/005. Cincinnati, USA: Environmental Protection Agency.

    Google Scholar 

  • Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, A., Bahlman, E., Costa, P., et al. (2001). Atmospheric mercury distribution in northern Europe and in the Mediterranean region. Atmospheric Environment, 35, 3019–3025.

    Article  Google Scholar 

  • World Health Organization (1976). Environmental health criteria no. 1: Mercury. Geneva, Switzerland: World Health Organization.

    Google Scholar 

  • World Health Organization. (2000). Air quality guidelines for Europe, Second edition. European Series, 91, WHO Regional Publications.

  • Žagar, D., Knap, A., Warwick, J. J., Rajar, R., Horvat, M., & Četina, M. (2005). Modelling of mercury transport and transformation processes in the Idrijca and Soča river system, Science of the Total Environment, 368,149–163.

    Article  CAS  Google Scholar 

  • Zehner, R. E., & Gustin, M. S. (2002). Estimation of mercury vapour flux from natural substrate in Nevada, Environmental Science & Technology, 36, 4039–4045.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almudena Ordóñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loredo, J., Soto, J., Álvarez, R. et al. Atmospheric Monitoring at Abandoned Mercury Mine Sites in Asturias (NW Spain). Environ Monit Assess 130, 201–214 (2007). https://doi.org/10.1007/s10661-006-9389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9389-0

Keywords

Navigation