Environmental Monitoring and Assessment

, Volume 124, Issue 1–3, pp 343–359 | Cite as

The Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Surface Sediments Along the Egyptian Mediterranean Coast

  • Ahmed El Nemr
  • Tarek O. Said
  • Azza Khaled
  • Amany El-Sikaily
  • Aly M. A. Abd-Allah
Original Article


Coastal marine sediment samples were collected from 31 sampling stations along the Egyptian Mediterranean Sea coast. All sediment samples were analyzed to determine aliphatic and polycyclic aromatic hydrocarbons (PAHs) as well as total organic carbon (TOC) contents and grain size analysis. Total concentrations of 16 EPA-PAHs in the sediments were varied from 88 to 6338 ng g−1 with an average value of 154 ng g−1 (dry weight). However, the concentrations of total aliphatic were varied from 1.3 to 69.9 ng g−1 with an average value of 15.6 ng g−1 (dry weight). The highest contents of PAHs were found in the Eastern harbor (6338 ng g−1), Manzala (5206 ng g−1) and El-Jamil East (4895 ng g−1) locations. Good correlations observed between a certain numbers of PAH concentrations allowed to identify its origin. The average total organic carbon (TOC) percent was varied from 0.91 to 4.54%. Higher concentration of total pyrolytic hydrocarbons (∑COMB) than total fossil hydrocarbons (∑PHE) declared that atmospheric fall-out is the significant source of PAHs to marine sediments of the Egyptian Mediterranean coast. The selected marked compounds, a principal component analysis (PCA) and special PAHs compound ratios (phenanthrene/anthracene vs fluoranthene/pyrene; ∑COMB/∑EPA-PAHs) suggest the pyrogenic origins, especially traffic exhausts, are the dominant sources of PAHs in most locations. Interferences of rather petrogenic and pyrolytic PAH contaminations were noticed in the harbors due to petroleum products deliveries and fuel combustion emissions from the ships staying alongside the quays.


Surface sediment PAHs Mediterranean;Egypt Pollution monitoring Hydrocarbons PCA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Determination of polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of the Western Mediterranean Sea. Environmental and Toxicology Chemistry, 17, 765–776.CrossRefGoogle Scholar
  2. Benlahcen, T.K., Chaoui, A., Budzinski, H., Bellocq, J., & Garrigues, P. (1997). Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments. Marine Pollution Bulletin, 34, 298–305.CrossRefGoogle Scholar
  3. Blumer, M., Mullin, M.M., & Thomas, D.W. (1963). Pristane in zooplankton. Science, 140, 974.CrossRefGoogle Scholar
  4. Bouloubassi, I., Lipiatou, E., Saliot, A., Tolosa, I., Bayona, J.M., & Albaiges, J. (1997). Carbon sources and cycle in the western Mediterranean-the use of molecular markers to determine the origin of organic matter. Deep-Sea Research Part 2, 44, 781–799.CrossRefGoogle Scholar
  5. Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde esturary. Marine Chemistry, 58, 85–97.CrossRefGoogle Scholar
  6. Burns, K.A., & Saliot, A. (1986). Petroleum hydrocarbons in Mediterranean Sea: a mass balance. Marine Chemistry, 20, 141–157.CrossRefGoogle Scholar
  7. CCME. (2001). Canadian Council of Ministers of the Environment. Canadian sediment quality guidelines for the protection of aquatic life (http://www.ec.gc.ca/ceqq-rcqe/sediment.htm).
  8. Chiou, C.T., McGroddy, S.E., & Kile, D. E. (1998). Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology, 32, 264–269.CrossRefGoogle Scholar
  9. Clark, R.B. (1997). Marine Pollution, Fourth Ed. Oxford: Claredon Press, p. 270.Google Scholar
  10. Colombo, J.C., Pelletier, E., Brochu, C., & Khalil, M. (1989). Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes, Case study: Rio de La Plata Estuary, Argentina. Environmental Science and Technology, 23, 888–894.CrossRefGoogle Scholar
  11. Dachs, J, Bayona, J. M., Fillaux, J., Saliot, A., & Albaigés, J. (1999). Evaluation of anthropogenic and biogenic inputs into the western Mediterranean using molecular markers. Marine Chemistry, 65, 195–210.CrossRefGoogle Scholar
  12. Dickhut, R.M., Canuel, E. M., Gustafson, K.E., Liu, K., Arzayus, K.M., Walker, S.E., Edgecombe, G., Gaylor, M. O., & Macdonald, E. H. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay Region. Environmental Science and Technology, 34, 4635–4640.CrossRefGoogle Scholar
  13. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216– 222.CrossRefGoogle Scholar
  14. Djomo, J.E., Garrigues, P., & Narbonne, J.F. (1996). Uptake and depuration of polycyclic aromatic hydrocarbons from sediment by the zebrafish (Bracydanio rerio). Environmental and Toxicology Chemistry, 15, 1177–1181.CrossRefGoogle Scholar
  15. Ehrhardt, M. (1987). Liophilic organic material: An apparatus for extracting solids used for their concentration from seawater, ICES Techn. Environ. Sci., 4, 1–14.Google Scholar
  16. Eljarrat, E., Caixach, J., Rivera, J., Torres, M., & Ginebreda, A. (2001). Toxic potency assessment of non-and mono-ortho PCbs, PCDDs, PCDFs, and PAHs in Northwest Mediterranean sediments (Catalonia, Spain). Environmental Science and Technology, 35, 3589–3594.CrossRefGoogle Scholar
  17. El Nemr, A., & Abd-Allah, A.M.A. (2003). Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. Chemosphere, 52, 1711–1716.CrossRefGoogle Scholar
  18. El Sikaily, A., Khaled, A., El Nemr, A., Said, T.O., & Abd-Allah, A.M.A. (2002). Determination of hydrocarbons in Bivalves from the Egyptian Mediterranean coast. Medcinal Marine Science, 312, 123–131.Google Scholar
  19. Folk, R.L. (1954). Petrology of sedimentary rocks. Austin, Texas: Hemphill Publication Cooperation.Google Scholar
  20. IARC (1983). (International Agency for research on cancer), IARC monographs on the evaluation of the carcinogenic risk of chemicals to human. Polynuclear aromatic hydrocarbons, Part I, chemical, environmental, and experimental data. Agency for Research on Cancer, Lyons, 32, 1–477.Google Scholar
  21. Galehouse, J.S. (1971). Sedimentation analysis. In R.E. Carver (Ed.), Procedures in sedimentary petrology. New York: Wiley, pp. 69–94.Google Scholar
  22. Gogou, A., Bouloubasi, I., & Stephanou, E.G. (2000). Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in the Cretan Sea surficial sediments. Marine Chemistry, 68, 265–282.CrossRefGoogle Scholar
  23. Gschwend, P.M., & Hites, R.A. (1981). Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochimica et Cosmochimica Acta, 45, 2359–2367.CrossRefGoogle Scholar
  24. Kavouras, I.G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E.G., Baer, D., & Oyola, P. (2001). Source apportionment of urban aliphatic and polyaromatic aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35, 2288–2294.CrossRefGoogle Scholar
  25. Kennicut, II, M.C., Wade, T.L., Presley, B.J., Requejo, A.G., Brooks, J.M., & Denoux. G.J. (1994). Sediment contaminants in Casco Bay, Maine: inventories, sources, and potential for biological impact. Environmental Science and Technology, 28, 1–15.CrossRefGoogle Scholar
  26. Kim, G.B., Maruya, K. A., Lee, R. F., Lee, J. H., Koh, C. H., & Tanabe, S. (1999). Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Marine Pollution Bulletin, 38, 7–15.CrossRefGoogle Scholar
  27. Landrum, P.F., & Robbins, J.A. (1990). Bioavailability of sediment associated contaminants to benthic invertebrates. In R. Baudo, J. P. Giesy, H. Muntau (Eds.), Sediments: chemistry and toxicity on inplace pollutants. Michigan, MI: Lewis publishers, pp. 237–263.Google Scholar
  28. Lipiatou, E., & Saliot, A. (1991). Fluxes and transport of anthropogenic and natural polycyclic aromatic hydrocarbons in the western Mediterranean Sea. Marine Chemistry, 32, 51–71.CrossRefGoogle Scholar
  29. Lipiatou, E., Tolosa, I., Simo, R., Bouloubassi, I., Dachs, J., Marti, S., Sicre, M.A., Bayona, J.M., Grimalt, J. O., Saliot, A., & Albaiges J. (1997). Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean Sea. Deep-Sea Research Part II, 44, 881–905.CrossRefGoogle Scholar
  30. Long, E.R., MacDonald, D.D., Smith, S.L., & Calder, F.D. (1995). Incidence of adverse biological effects within ranges of Chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.CrossRefGoogle Scholar
  31. Louati, A., Elleuch, B., Kallel, M., Saliot, A., Dagaut, J., & Oudot, J. (2001). Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia) Mediterranean Sea. Marine Pollution Bulletin, 42, 445–452.CrossRefGoogle Scholar
  32. Mackie, P.R., Hardy, R., Whittle, K.J., Bruce, C., & McGill, A.S. (1980). Tissue Hydrocarbon Burden of mussels from various Sites around the Scottish Coast. In: A. Bjorseth & A. J. Dunnis (Eds.), Polycyclic aromatic hydrocarbons chemistry and biological effects. Columbus, Ohio: Battle Press, pp. 379–393.Google Scholar
  33. Ma, L.L., Chu, S.G., Wang, X. T., Cheng, H.X., Liu, X.F., & Xu, X.B. (2005). Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijin, China. Chemosphere, 58, 1355–1363.CrossRefGoogle Scholar
  34. Menzie, C.A., & Potocki, B.B. (1992). Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environmental Science and Technology, 26, 1278–1284.CrossRefGoogle Scholar
  35. Neff, J.M. (1979). Polycyclic aromatic hydrocarbons sources fates and biological effects. London: Applied Science.Google Scholar
  36. NRC. (1983). Polycyclic aromatic hydrocarbons: evaluation of sources and effects. Washington, DC: National Academy Press.Google Scholar
  37. NRC. (1985). Oil in the sea: Inputs, fates and effects. Washington, DC: National Academy Press.Google Scholar
  38. Peters, K.E., & Moldowan, J. M. (Eds.) (1993). The biomarker Guide. Interpreting molecular fossils in petroleum and ancient sediments. Englewood Cliffs, NJ: Prentic-Hall, p. 363.Google Scholar
  39. Porte, C., & Albaigés, J. (1993). Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustacean and fishes. Archives of Environment Contamination and Toxicology, 26, 273–281.Google Scholar
  40. Prahl, F.G., & Carpenter, R. (1983). Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediments. Geochimica et Gosmochimica Acta, 47, 1013–1023.CrossRefGoogle Scholar
  41. Readman, J.W., Fillmann, G., Tolosa, I., Bartocci, J., Villeneuve, J.P., Catinni, C., & Mee, L.D. (2002). Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin, 44, 48–62.CrossRefGoogle Scholar
  42. Readman, J.W., Mantoura, R.F.C., & Rhead, M. M. (1987). Arecord of polycyclic aromatic hydrocarbons (PAH) pollution obtained from accreting sediments of the Tamar estuary, UK: Evidence for non-equilibrium behaviour of PAH. Science of the Total Environment, 66, 73–94.CrossRefGoogle Scholar
  43. Rogge, W.F., Hildemann, L., Mazurek, M.A., Cass, G.R., & Simoneit, B.R.T. (1993). Sources of fine organic aerosol: 2. Noncatalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environmental Science and Technology, 27, 636–651.CrossRefGoogle Scholar
  44. Romano, E., Ausili, A., Zharova, N., Magno, M. C., Pavoni, B., & Gabellini, M. (2004). Marine sediment contamination of an idusterial site at port of Bagnoli, Gulf of Naples, Southern Italy. Marine Pollution Bulletin, 49, 487–495.CrossRefGoogle Scholar
  45. Sicre, M.A., Marty, J.C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmospharic Environment, 21, 2247–2259.CrossRefGoogle Scholar
  46. Simpson, C.D., Mosi, A.A., Cullen, W.R., & Reimer, K.J. (1998). Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediment from kitimat harbor Canada. Science of the Total Environment, 181, 265–278.CrossRefGoogle Scholar
  47. Soclo, H.H., Garrigues, P.H., & Ewald, M. (2000). Origin of polycylic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.CrossRefGoogle Scholar
  48. Steinhauer, M.S., & Boehm, P.D. (1992). The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediments, river sediments, and coastal peat of Alaskan Beaufort Sea: implications for detecting anthropogenic hydrocarbon inputs. Marine Environmental Research, 33, 223–253.CrossRefGoogle Scholar
  49. Tolosa, I., Bayona, J.M., & Albaiges, J. (1996). Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in Northwestern Mediterranean sediments: spatial and temporal variability, fluxes, and budgets. Environmental Science and Technology, 30, 2495–2503.CrossRefGoogle Scholar
  50. Tolosa, I., de Mora, S., Sheikholeslami, M.R., Villeneuve, J.P., Bartocci, J., & Cattini, C. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Pollution Bulletin, 48, 44–60.CrossRefGoogle Scholar
  51. UNEP/ECE/UNIDO/FAO/UNESCO/WHO/IAEA. (1984). Pollutants from land based sources in the Mediterranean Sea. UNEP Regional Seas Reports and Studies No. 32, UNEP, Geneva.Google Scholar
  52. UNEP/IOC/IAEA. (1991). Sampling of selected marine Organisms and sample preparation for the analysis of chlorinated hydrocarbons. Reference methods for marine pollution studies no. 12, revision 2. Nairobi: United Nations Environment Programme, 17.Google Scholar
  53. UNEP/IOC/IAEA. (1992). Determination of petroleum hydrocarbons in sediments. Reference Methods for Marine Pollution Studies, 20, UNEP, p. 75.Google Scholar
  54. USEPA. (1993). Proposed Sediment Quality Criteria for the Protection of Benthic Organisma. EPA-882-R-93-012, EPA-882-R-93-013, EPA-882-R-93-014. US Environmental Protection Agency, Washington, DC: Office of Water.Google Scholar
  55. Varanasi, U. (1989). Metabolism of PAHs in the aquatic environment. Boca Raton, FL: CRC Press.Google Scholar
  56. Venkatesan, M.I., & Kaplan, I.R. (1982). Distribution and transport of hydrocarbons in surface sediments of the Alaskan outer continental shelf. Geochimica et Cosmochimca Acta, 46, 2135–2149.CrossRefGoogle Scholar
  57. Volkman, J.K., Holdsworth, D.G., Neil, G.P., & Bavor Jr, H.J. (1992). Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of the Total Environmental, 112, 203–219.CrossRefGoogle Scholar
  58. Witt, G. (1995). Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31, 237–248.CrossRefGoogle Scholar
  59. Yang, S.Y.N., Connell, D. W., Hawker, D.W., & Kayat, S. I. (1991). Polycyclic aromatic hydrocarbons in air, soil land vegetation in the vicinity of an urban roadway. Science of the Total Environmental, 102, 229–240.CrossRefGoogle Scholar
  60. Yang, G.P. (2000). Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environmental Pollution, 108,163–171.CrossRefGoogle Scholar
  61. Zedeck, M.S. (1980). Polycyclic aromatic hydrocarbons: review. Journal of Environmental Pathology and Toxicology, 3, 537–567.Google Scholar

Copyright information

© Springer Science + Business Media, B.V. 2006

Authors and Affiliations

  • Ahmed El Nemr
    • 1
  • Tarek O. Said
    • 1
  • Azza Khaled
    • 1
  • Amany El-Sikaily
    • 1
  • Aly M. A. Abd-Allah
    • 1
  1. 1.Environmental DivisionNational Institute of Oceanography and FisheriesAlexandriaEgypt

Personalised recommendations