Skip to main content
Log in

Characterization of Escherichia Coli Isolates from Different Fecal Sources by Means of Classification Tree Analysis of Fatty Acid Methyl Ester (Fame) Profiles

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Microbial source tracking (MST) methods need to be rapid, inexpensive and accurate. Unfortunately, many MST methods provide a wealth of information that is difficult to interpret by the regulators who use this information to make decisions. This paper describes the use of classification tree analysis to interpret the results of a MST method based on fatty acid methyl ester (FAME) profiles of Escherichia coli isolates, and to present results in a format readily interpretable by water quality managers. Raw sewage E. coli isolates and animal E. coli isolates from cow, dog, gull, and horse were isolated and their FAME profiles collected. Correct classification rates determined with leaveone-out cross-validation resulted in an overall low correct classification rate of 61%. A higher overall correct classification rate of 85% was obtained when the animal isolates were pooled together and compared to the raw sewage isolates. Bootstrap aggregation or adaptive resampling and combining of the FAME profile data increased correct classification rates substantially. Other MST methods may be better suited to differentiate between different fecal sources but classification tree analysis has enabled us to distinguish raw sewage from animal E. coli isolates, which previously had not been possible with other multivariate methods such as principal component analysis and cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderisio, K. A. and DeLuca, N.: 1999, ‘Seasonal enumeration of fecal coliform bacteria from the feces of Ring-Billed gulls (Larus delawarensis) and Canada geese (Branta canadensis),’ Appl. Environ. Microbiol. 65, 5628–5630.

    PubMed  CAS  Google Scholar 

  • Beerens, H.: 1998, ‘Bifidobacteria as indicators of faecal contamination in meat and meat products: Detection, determination of origin and comparison with Escherichia coli,’ Int. J. Food Microbiol. 40, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, A. E. and Field, K. G.: 2000a, ‘Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes,’ Appl. Environ. Microbiol. 66, 1587–1594.

    Article  CAS  Google Scholar 

  • Bernhard, A. E. and Field, K. G.: 2000b, ‘A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA,’ Appl. Environ. Microbiol. 66, 4571–4574.

    Article  CAS  Google Scholar 

  • Birnbaum, D., Herwaldt, L., Low, D. E., Noble, M., Pfaller, M., Sherertz, R. and Chow, A. W.: 1994, ‘Efficacy of microbial identification system for epidemiologic typing of coagulase-negative Staphylococci,’ J. Clin. Microbiol. 32, 2113–2119.

    PubMed  CAS  Google Scholar 

  • Breiman, L.: 1996a, ‘Bagging predictors,’ Mach. Learn. 26, 123–140.

    Google Scholar 

  • Breiman, L.: 1996b, ‘Technical Report: Bias, Variance, and Arcing Classifiers,’ Statistics department, University of California.

  • Breiman, L., Friedman, J., Olshen, R. and Stone, C.: 1984, ‘Classification and Regression Trees,’ Belmont, CA, Wadsworth International Group.

    Google Scholar 

  • Calci, K. R., Burkhardt, W., Watkins, W. D. and Rippey, S. R.: 1998 ‘Occurrence of male-specific bacteriophage in feral and domestic animal wastes, human feces, and human-associated wastewaters,’ Appl. Environ. Microbiol. 64, 5027–5029.

    PubMed  CAS  Google Scholar 

  • Carson, C. A., Shear, B. L., Ellersieck, M. R. and Asfaw, A.: 2001, ‘Identification of fecal Escherichia coli from humans and animals by ribotyping,’ Appl. Environ. Microbiol. 67, 1503–1507.

    Article  PubMed  CAS  Google Scholar 

  • Carson, C. A., Shear, B. L., Ellersieck, M. R. and Schnell, J. D.: 2003, ‘Comparison of ribotyping and repetitive extragenic palindromic- PCR for identification of fecal Escherichia coli from humans and animals,’ Appl. Environ. Microbiol. 69, 1836–1839.

    Article  PubMed  CAS  Google Scholar 

  • Dombek, P. E., Johnson, L. K., Zimmerley, S. T. and Sadowsky, M. J.: 2000, ‘Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources,’ Appl. Environ. Microbiol. 66, 2572–2577.

    Article  PubMed  CAS  Google Scholar 

  • Drucker, D. B. and Veazey, F. J.: 1977, ‘Fatty acid fingerprints of Streptococcus mutans NCTC 10832 grown at various temperatures,’ Appl. Environ. Microbiol. 33, 221–226.

    PubMed  CAS  Google Scholar 

  • Dzierzewicz, Z., Cwalina, B., Kurkiewicz, S., Chodurek, E. and Wilczok, T.: 1996, ‘Intraspecies variability of cellular fatty acids among soil and intestinal strains of Desulfovibrio desulfuricans,’ Appl. Environ. Microbiol. 62, 3360–3365.

    PubMed  CAS  Google Scholar 

  • Germida, J. J., Siciliano, S. D. and Seib, A. M.: 1998, ‘Phenotypic plasticity of Pseudomonas aureofaciens (lacZY) introduced into and recovered from field and laboratory microcosm soils,’ FEMS Microbiol. Ecol. 27, 133–139.

    Article  CAS  Google Scholar 

  • Griffin, D. W., Gibson, C. J., Lipp, E. K., Riley, K., Paul, J. H. and Rose, J. B.: 1999, ‘Detection of viral pathogens by reverse transcriptase PCR and of microbial indicators by standard methods in the canals of the Florida Keys,’ Appl. Environ. Microbiol. 65, 4118–4125.

    PubMed  CAS  Google Scholar 

  • Griffin, D.W., Lipp, E. K., McLaughlin, M. R. and Rose, J. B.: 2001, ‘Marine recreation and public health microbiology: Quest for the ideal indicator,’ BioScience 51, 817–825.

    Article  Google Scholar 

  • Hagedorn, C., Crozier, J. B., Mentz, K. A., Booth, A. M., Graves, A. K., Nelson, N. J. and Reneau, R. B.: 2003, ‘Carbon source utilization profiles as a method to identify sources of faecal pollution in water,’ J. Appl. Microbiol. 94, 792–799.

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn, C., Robinson, S. L., Filtz, J. R., Grubbs, S. M., Angier, T. A. and Reneau, R. B.: 1999, ‘Determining sources of fecal pollution in a rural virginia watershed with antibiotic resistance patterns in fecal Streptococci,’ Appl. Environ. Microbiol. 65, 5522–5531.

    PubMed  CAS  Google Scholar 

  • Harwood, V. J., Whitlock, J. and Withington, V.: 2000, ‘Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: Use in predicting the source of fecal contamination in subtropical waters,’ Appl. Environ. Microbiol. 66, 3698–3704.

    Article  PubMed  CAS  Google Scholar 

  • Havelaar, A. H., Schets, F. M., Vansilfhout, A., Jansen, W. H., Wieten, G. and Vanderkooij, D.: 1992, ‘Typing of Aeromonas strains from patients with diarrhea and from drinking-water,’ J. Appl. Bacteriol. 72, 435–444.

    PubMed  CAS  Google Scholar 

  • Havelaar, A. H., Pot-Hogeboom, W. M., Furuse, K., Pot, R. and Hormann, M. P.: 1990, ‘F-specific RNA bacteriophages and sensitive host strains in faeces and wastewater of human and animal origin,’ J. Appl. Bacteriol. 69, 30–37.

    PubMed  CAS  Google Scholar 

  • Huys, G., Kämpfer, P., Vancanneyt, M., Coopman, R., Janssen, P. and Kersters, K.: 1997, ‘Effect of the growth medium on the cellular fatty acid composition of aeromonads: Consequences for the chemotaxonomic differentiation of DNA hybridization groups in the genus Aeromonas,’ J. Microbiol. Meth. 28, 89–97.

    Article  CAS  Google Scholar 

  • Jagals, P., Grabow, W. O. K. and Devilliers, J. C.: 1995, ‘Evaluation of indicators for assessment of human and animal fecal pollution of surface run-off,’ Water Sci. Technol. 31, 235–241.

    Article  Google Scholar 

  • Johnson, R. A. and Wichern, D. W.: 1998, ‘Applied Multivariate Statistical Analysis, 4th ed.,’ Upper Saddle River, NJ, Prentice Hall.

    Google Scholar 

  • Juneja, V. K. and Davidson P. M.: 1993, ‘Influence of temperature on the fatty acid profile of Listeria monocytogenes,’ J. Rapid Methods Automat. Microbiol. 2, 55–71.

    Article  Google Scholar 

  • Khatib, L. A., Tsai, Y. L. and Olson, B. H.: 2002, ‘A biomarker for the identification of cattle fecal pollution in water using the LTIIa toxin gene from enterotoxigenic Escherichia coli,’ Appl. Microbiol. Biot. 59, 97–104.

    Article  CAS  Google Scholar 

  • Ley, V., Higgins, J. and Fayer, R.: 2002, ‘Bovine Enteroviruses as indicators of fecal contamination,’ Appl. Environ. Microbiol. 68, 3455–3461.

    Article  PubMed  CAS  Google Scholar 

  • Parveen, S., Hodge, N. C., Stall, R. E., Farrah, S. R. and Tamplin, M. L.: 2001, ‘Phenotypic and genotypic characterization of human and nonhuman Escherichia coli,’ Water Res. 35, 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Parveen, S., Portier, M., Robinson, K., Edmiston, L. and Tamplin, M. L.: 1999, ‘Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution,’ Appl. Environ. Microbiol. 65, 3142–3147.

    PubMed  CAS  Google Scholar 

  • Rhodes, M. W. and Kator, J.: 1999, ‘Sorbitol-fermenting bifidobacteria as indicators of diffuse human faecal pollution in estuarine watersheds,’ J. Appl. Microbiol. 87, 528–535.

    Article  PubMed  CAS  Google Scholar 

  • Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R. and Lukasik, J.: 2002, ‘Microbial source tracking: Current methodology and future directions,’ Appl. Environ. Microbiol. 68, 5796–5803.

    Article  PubMed  CAS  Google Scholar 

  • Seurinck, S., Verstraete, W. and Siciliano, S.: 2003, ‘The use of 16S-23S rRNA intergenic spacer region-PCR and repetitive extragenic palindromic-PCR analyses of Escherichia coli isolates to identify non-point fecal sources,’ Appl. Environ. Microbiol. 69, 4942–4950.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. M., Santo-Domingo, J. W. and Reasoner D. J.: 2002, ‘Microbial source tracking: State of the science,’ Environ. Sci. Technol. 36, 5279–5284.

    Article  PubMed  CAS  Google Scholar 

  • Souza, V., Rocha, M., Valera, A. and Eguiarte, L. E.: 1999, ‘Genetic structure of natural populations of Escherichia coli in wild hosts on different continents,’ Appl. Environ. Microbiol. 65, 3373–3385.

    PubMed  CAS  Google Scholar 

  • Stead, D. E., Sellwood, J. E., Wilson, J. and Viney, I.: 1992, ‘Evaluation of a commercial Microbial Identification System based on fatty-acid profiles for rapid, accurate identification of plant pathogenic bacteria,’ J. Appl. Bacteriol. 72, 315–321.

    Google Scholar 

  • Steinberg, D. and Colla, P.: 1997, ‘Manual CART-Classification and Regression Trees,’ San Diego, CA, Salford Systems.

    Google Scholar 

  • Thompson, I. P., Ellis, R. J. and Bailey, M. J.: 1995, ‘Autecology of a genetically modified fluorescent pseudomonad on sugar beet,’ FEMS Microbiol. Ecol. 17, 1–14.

    Article  CAS  Google Scholar 

  • Wiggins, B. A.: 1996, ‘Discriminant analysis of antibiotic resistance patterns in fecal Streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters,’ Appl. Environ. Microbiol. 62, 3997–4002.

    PubMed  CAS  Google Scholar 

  • Wiggins, B. A., Cash, P. W., Creamer, W. S., Dart, S. E., Garcia, P. P., Gerecke, T. M., Han, J., Henry, B. L., Hoover, K. B., Johnson, E. L., Jones, K. C., McCarthy, J. G., McDonough, J. A., Mercer, S. A., Noto, M. J., Park, H., Phillips, M. S., Purner, S. M., Smith, B. M., Stevens, E. N. and Varner, A. K.: 2003, ‘Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries,’ Appl. Environ. Microbiol. 69, 3399–3405.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seurinck, S., Deschepper, E., Deboch, B. et al. Characterization of Escherichia Coli Isolates from Different Fecal Sources by Means of Classification Tree Analysis of Fatty Acid Methyl Ester (Fame) Profiles. Environ Monit Assess 114, 433–445 (2006). https://doi.org/10.1007/s10661-006-5031-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-5031-4

Keywords

Navigation