Skip to main content
Log in

Sampling Scale Effects in Random Fields and Implications for Environmental Monitoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concept of a sampling scale triplet of spacing, extent and support is used to define the spatial dimensions of a monitoring network or a field study. The spacing is the average distance between samples, the extent is the size of the domain sampled and the support is the averaging area of one sample. The aim of this paper is to examine what is the bias and the random error (uncertainty) introduced by the sampling scale triplet into estimates of the mean, the spatial variance and the integral scale of a variable in a landscape. The integral scale is a measure of the average distance over which a variable is correlated in space. A large number of two dimensional random fields are generated from which hypothetical samples, conforming to a certain sampling scale triplet, are drawn which in turn are used to estimate the sample mean, spatial variance and integral scale. The results indicate that the biases can be up to two orders of magnitude. The bias of the integral scale is positively related to the magnitude of any of the components of the scale triplet while the bias of the spatial variance is different for different components of the scale triplet. All sampling scale effects are relative to the underlying correlation length of the variable of interest which is closely related to the integral scale. The integral scale can hence be used for sampling design and data interpretation. Suggestions are given on how to adjust a monitoring network to the scales of the variables of interest and how to interpret sampling scale effects in environmental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. P.: 1997, ‘Characterization of Geological Heterogeneity’, in: G. Dagan and S. P. Neuman (eds), Subsurface Flow and Transport: A Stochastic Approach. International Hydrology Series, University Press, Cambridge, pp. 23–43.

    Google Scholar 

  • Beckie, R.: 1996, ‘Sampling scale, network sampling scale, and groundwater model parameters’, Water Resources Res. 32(1), 65–76.

    Article  Google Scholar 

  • Bellehumeur, C. and Legendre, P.: 1998, ‘Multiscale sources of variation in ecological variables: Modeling spatial dispersion, elaborating sampling designs’, Landscape Ecol. 13(1), 15–25.

    Article  Google Scholar 

  • Bierkens, M. F. P., Finke, P. A. and de Willigen, P.: 2000, Upscaling and Downscaling Methods for Environmental Research. Kluwer Academic Press, Dordrecht, 190 pp.

    Google Scholar 

  • Blöschl, G. and Sivapalan, M.: 1995, ‘Scale issues in hydrological modelling – a review’, Hydrol. Processes 9(3/4), 251–290.

    Article  Google Scholar 

  • Blöschl, G.: 1999, ‘Scaling issues in snow hydrology’, Hydrol. Processes 13(14–15), 2149–2175.

    Article  Google Scholar 

  • Caeiro, S., Painho, M., Goovaerts, P., Costa, H. and Sousa, S.: 2003, ‘Spatial sampling design for sediment quality assessment in estuaries’, Environ. Modell. Software 18(10), 853–859.

    Article  Google Scholar 

  • Chilès, J.-P. and Delfiner, P.: 1999, Geostatistics. Modelling Spatial Uncertainty. Wiley, NY, 695 pp.

    Google Scholar 

  • Cintoli, S., Neuman, S. P. and Di Federico, V.: 2004, Variograms of Fractional Brownian Motion on Finite Domains, geoENV 2004, Neuchâtel, Pre-Proceedings, pp. 347–357.

  • Cressie, N.: 1991, Statistics for Spatial Data. John Wiley, New York, 900 pp.

    Google Scholar 

  • Cushman, J. H.: 1984, ‘On unifying the concepts of scale, instrumentation, and stochastics in the development of multiphase transport theory’, Water Resources Res. 20(11), 1668–1676.

    Article  Google Scholar 

  • Cushman, J. H.: 1987, ‘More on stochastic models’, Water Resources Res. 23, 750–752.

    Article  CAS  Google Scholar 

  • Di Federico, V. and Neuman, S. P.: 1997, ‘Scaling of random fields by means of truncated power variograms and associated spectra’, Water Resources Res. 33(5), 1075–1085.

    Article  Google Scholar 

  • Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S. and Namkhai, A.: 2000, ‘Temporal and spatial scales of observed soil moisture variations in the extratropics’, J. Geophys. Res. 105(D9), 11865–11877.

    Article  Google Scholar 

  • Faures, J.-M., Goodrich, D. C., Woolhiser, D. A. and Sorooshian, S.: 1995, ‘Impact of small-scale spatial rainfall variability on runoff modeling’, J. Hydrology 173(1–4), 309–326.

    Article  Google Scholar 

  • Franklin, R. B. and Mills, A. L.: 2003, ‘Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field’, FEMS Microbiol. Ecol. 44, 335–346.

    Article  PubMed  CAS  Google Scholar 

  • Gelhar, L. W.: 1993, Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs, N. J., 390 pp.

  • Ghosh, B.: 1951, ‘Random distances within a rectangle and between two rectangles’, Bull. Calcutta Math. Soc. 43, 17–24.

    MathSciNet  Google Scholar 

  • Hatcher, B. G., Imberger, J. and Smith, S. V. 1987, ‘Scaling analysis of coral reef systems: An approach to problems of scale’, Coral Reefs 5, 171–181.

    Article  Google Scholar 

  • Haugen, D. A.: 1978, ‘Effects of Sampling Rates and Averaging Periods on Meteorological Measurements’, in: Proceedings of the 4th Symposium on Meteorological Observations and Instrumentation, American Meteorological Society, Boston, pp. 15–18.

  • Hewitt, J. E., Thrush, S. F., Cummings, V. J. and Turner, S. J.: 1998, ‘The effect of changing sampling scales on our ability to detect effects of large-scale processes on communities’, J. Experimental Marine Biology and Ecology 227(2), 251–264.

    Article  Google Scholar 

  • Journel, A. G. and Huijbregts, C. J.: 1978, Mining Geostatistics. Academic Press, London, 600 pp.

    Google Scholar 

  • Jurado-Expósito, M., López-Granados, F., González-Andújar, J. L. and García-Torres, L.: 2004, ‘Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons’, Eur. J. Agronomy I21(3), 287–296.

    Article  Google Scholar 

  • Lopes, V. L.: 1996, ‘On the effect of uncertainty in spatial distribution of rainfall on catchment modelling’, Catena 28, 107–119.

    Article  CAS  Google Scholar 

  • Mantoglou, A. and Wilson, J. L.: 1981, Simulation of Random Fields with the Turning Bands Method. Report No. 264, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

  • Mantoglou, A. and Wilson, J. L.: 1982, ‘The turning bands method for simulation of random fields using line generation by a spectral method’, Water Resources Res. 18(5), 1379–1394.

    Article  Google Scholar 

  • Matheron, G.: 1965, Les variables regionalisées et leur estimation. Masson, Paris, 305 pp.

    Google Scholar 

  • McBratney, A. B.: 1992, ‘On variation, uncertainty and informatics in environmental soil management’, Austr. J. Soil Res. 30, 913–935.

    Article  Google Scholar 

  • McDonald, T. L.: 2003, ‘Review of environmental monitoring methods: Survey designs’, Environ. Monit. Assess. 85, 277–292.

    Article  PubMed  Google Scholar 

  • Mohanty, B. P., Famiglietti, J. S. and Skaggs, T. H.: 2000, ‘Evolution of soil moisture spatial structure in a mixed vegetation pixel during the Southern Great Plains 1997 (SGP97) Hydrology Experiment’, Water Resources Res. 36(12), 3675–3686.

    Article  Google Scholar 

  • Morrissey, M. L., Maliekal, J. A., Greene, J. S. and Wang, J.: 1995, ‘The uncertainty of simple spatial averages using rain gauge networks’, Water Resources Res. 31(8), 2011–2017.

    Article  Google Scholar 

  • Nunan, N., Wu, K., Young, I. M., Crawford, J. W. and Ritz, K.: 2002, ‘In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil’, Microbial Ecol. 44, 296-305.

    Article  CAS  Google Scholar 

  • Nyquist, H.: 1924, ‘Certain factors affecting telegraph speed’, Bell Systems Techn. J. 3.

  • Oliver, M. A. and Khayrat, A. L.: 2001, ‘A geostatistical investigation of the spatial variation of radon in soil’, Computers Geosciences 27, 939–957.

    Article  CAS  Google Scholar 

  • Priestley, M. B.: 1981, ‘Spectral Analysis and Time Series’, in: Probability and Mathematical Statistics. Academic Press Ltd, London, 890 pp.

  • Qi, Y. and Wu, J.: 1996, ‘Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices’, Landscape Ecol. 11(1), 39–49.

    Article  Google Scholar 

  • Rahel, F. J.: 1990, ‘The hierarchical nature of community persistence: A problem of scale’, The American Naturalist 136(3), 328–344.

    Article  Google Scholar 

  • Rodríguez-Iturbe, I. and Mejía, J. M.: 1974, ‘The design of rainfall networks in time and space’, Water Resources Res. 10(4), 713–728.

    Article  Google Scholar 

  • Root, T. L. and Schneider, S. H.: 1995, ‘Ecology and climate: Research strategies and implications’, Science 269, 334–340.

    Article  CAS  Google Scholar 

  • Russo, D. and Jury, W. A.: 1987, ‘A theoretical study of the estimation of the correlation scale in spatially variable fields 1. stationary fields’, Water Resources Res. 23(7), 1257–1268.

    Article  Google Scholar 

  • Schmid, H. P.: 2002, ‘Footprint modeling for vegetation atmosphere exchange studies: A review and perspective’, Agricult. Forest Meteor. 113, 159–183.

    Article  Google Scholar 

  • Seyfried, M. S. and Wilcox, B. P.: 1995, ‘Scale and the nature of spatial variability: Field examples having implications for hydrological modeling’, Water Resources Res. 31(1), 173–184.

    Article  Google Scholar 

  • Sivapalan, M. and Blöschl, G.: 1998, ‘Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves’, J. Hydrology 204(1–4), 150–167.

    Article  Google Scholar 

  • Sivapalan, M.: 1986, Scale Problems in Rainfall, Infiltration and Runoff Production. PhD Dissertation Thesis, Dept. of Civil Engng, Princeton University, 271 pp.

  • Skøien, J. O., Blöschl, G. and Western, A. W.: 2003, ‘Characteristic space-time scales in hydrology’, Water Resources Res. 39(10): 1304, doi: 10.1029/2002WR001736.

  • Stenger, R., Priesack, E. and Beese, F.: 2002, ‘Spatial variation of nitrate-N and related soil properties at the plot-scale’, Geoderma 105(3–4), 259–275.

    Article  CAS  Google Scholar 

  • Stommel, H.: 1963, ‘Varieties of oceanographic experience’, Science 139, 572–576.

    Article  Google Scholar 

  • Taylor, G. I.: 1921, ‘Diffusion by continuous movements’, Proc. London Math. Soc. 20, 196–211.

    Google Scholar 

  • Theocharopoulos, S. P., Wagner, G., Sprengart, J., Mohr, M.-E., Desaules, A., Muntau, H., Christou, M. and Quevauviller, P.: 2001, ‘European soil sampling guidelines for soil pollution studies’, Sci. Total Environ. 264(1–2), 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S. K.: 2002, Sampling. Wiley Series in Probability and Statistics. Wiley, New York, USA, 367 pp.

    Google Scholar 

  • Wallace, C. S. A., Watts, J. M. and Yool, S. R.: 2000, ‘Characterizing the spatial structure of vegetation communities in the Mojave Desert using geostatistical techniques’, Computers Geosciences 26(4), 397–410.

    Article  Google Scholar 

  • Webster, R. and Oliver, M. A.: 2001, Geostatistics for Environmental Scientists. Statistics in Practice. Wiley, Chichester, England.

    Google Scholar 

  • Western, A. W. and Blöschl, G.: 1999, ‘On the spatial scaling of soil moisture’, J. Hydrology 217, 203–224.

    Article  Google Scholar 

  • Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A., Blöschl G. and Wilson D. J.: 2004, ‘Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes’, J. Hydrology 286(1–4), 113–134.

    Article  Google Scholar 

  • Western, A. W., Blöschl G. and Grayson R. B.: 1998, ‘Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment’, J. Hydrology 205, 20–37.

    Article  Google Scholar 

  • Wiens, J. A.: 1989, ‘Spatial scaling in ecology’, Functional Ecol. 3, 385–397.

    Article  Google Scholar 

  • Zehe, E. and Blöschl, G.: 2004, ‘Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions’, Water Resources Res. 40, W10202, doi:10.1029/2003WR002869.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Blöschl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skøien, J.O., Blöschl, G. Sampling Scale Effects in Random Fields and Implications for Environmental Monitoring. Environ Monit Assess 114, 521–552 (2006). https://doi.org/10.1007/s10661-006-4939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-4939-z

Keywords

Navigation