Skip to main content
Log in

An Experimental Methodology for Monitoring Contaminant Transport Through Geotechnical Centrifuge Models

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, an attempt has been made to highlight an experimental methodology for monitoring contaminant transport through locally available silty soil and commercially available clay in geotechnical centrifuge models, for different compaction states. Use of multiple depth sensors to determine depth distribution of sodium chloride in the soil column has been detailed. The obtained results have been compared with argentometric method. To validate the centrifuge modelling, modelling of models has been used. The test setup developed can simulate contaminant transport mechanisms through the soil mass, which is approximately 10 m deep, over a period of 600 days. R e and P e are found to be N times higher in the centrifuge models. These numbers are found to be several orders less than unity. This indicates that laminar flow prevails and the dominating Cl transport mechanism in centrifuge is diffusion. The study also highlights the fact that the geotechnical centrifuge modelling can be used as a viable alternative to field scale experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Hassanein, Z. S., Benson C. H. and Blotz, L. R.: 1996, ‘Electrical resistivity of compacted clays’, J. Geotechn. Eng. ASCE 122(5), 397–406.

    Article  CAS  Google Scholar 

  • APHA: 1989. ‘Standard methods for the examination of water and wastewater’, in: Lenore S. Clesceri, Arnold E. Greenberg and R. Rhodes Trussell (eds), 17th ed., American Public Health Association (APHA), Washington, DC, 4.67–4.69.

    Google Scholar 

  • Arulanandan, K., Thompson, P. Y., Kutter, B. L., Meegoda, N. J., Muraleetharan, K. K. and Yogachandran, C.: 1988, ‘Centrifuge modelling of transport processes for pollutants in soils’, J. Geotechn. Eng. ASCE 114(2), 185–205.

    Google Scholar 

  • ASTM: 1984, ‘Standard test method for fineness of Portland cement by air permeability apparatus (C204-84)’, in: Annual Book of ASTM Standards, Vol. 04.01. ASTM, Philadelphia, USA, pp. 156–162.

    Google Scholar 

  • ASTM: 1994a, ‘Standard test method for specific gravity of soils (D854-92)’, in: Annual Book of ASTM Standards, Vol. 04.08. ASTM, Philadelphia, USA, pp. 80–83.

    Google Scholar 

  • ASTM: 1994b, ‘Standard test method for particle size analysis of soils (D422-63)’, in: Annual Book of ASTM Standards, Vol. 04.08. ASTM, Philadelphia, USA, pp. 10–16.

    Google Scholar 

  • ASTM: 1994c, ‘Test method for laboratory compaction characteristics of soils using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3 (D698-91)’, in: Annual Book of ASTM Standards, Vol. 04.08. ASTM, Philadelphia, USA, pp. 69–76.

    Google Scholar 

  • Badv, K. and Rowe, R. K.: 1996, ‘Contaminant transport through a soil liner underlain by an unsaturated stone collection layer’, Can. Geotechn. J. 33, 416–430.

    CAS  Google Scholar 

  • Bear J.: 1972, Dynamics of Fluid Flow, Elsevier Publishing Company, The Netherlands.

    Google Scholar 

  • Cargill, K. W. and Ko, H. Y.: 1983, ‘Centrifuge modelling of transient water flow’, J. Geotechn. Eng. ASCE 109(4), 536–555.

    Google Scholar 

  • Celorie, J. A., Vinson, T. S., Woods, S. L. and Istok, J. D.: 1989, ‘Modelling solute transport by centrifugation’, J. Environ. Eng. ASCE 115(3), 513–526.

    Google Scholar 

  • Cooke, A. B. and Mitchell, R. J.: 1991, ‘Physical modelling of a dissolved contaminant in an unsaturated sand’, Can. Geotechn. J. 28, 829–833.

    Google Scholar 

  • Crooks, V. E. and Quigley, R. M.: 1984, ‘Saline leachate migration through clay: A comparative laboratory and field investigation’, Can. Geotechn. J. 21, 349–362.

    CAS  Google Scholar 

  • Folkes, D. J.: 1982, ‘Fifth Canadian geotechnical colloquium: Control of contaminant migration by the use of liners’, Can. Geotechn. J. 19, 320–344.

    Article  CAS  Google Scholar 

  • Freeze, R. A. and Cherry, J. A.: 1979, Ground Water. Prentice Hall, Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • Hellawell, E. E. and Savvidou, C.: 1994, ‘A study of contaminant transport involving density driven flow and hydrodynamic clean up’, Centrifuge 94, Leung, Lee and Tan (eds), A. A. Balkema, Rotterdam, pp. 357–362.

    Google Scholar 

  • Hensley, P. J. and Schofield, A. N.: 1991, ‘Accelerated physical modelling of hazardous-waste transport’, Geotechnique 41(3), 447–465.

    Google Scholar 

  • Hensley, P. J. and Savvidou, C.: 1993, ‘Modelling coupled heat and contaminant transport in groundwater’, Int. J. Numerical Anal. Meth. Geomech. 17, 493–527.

    Article  Google Scholar 

  • IS 1498: 1970, ‘Classification and Identification of Soils for General Engineering Purposes’, Bureau of Indian Standards, New Delhi, India, pp. 16–22.

    Google Scholar 

  • IS 2720: 1976, ‘Methods of Test for Soils: Determination of Cation Exchange Capacity’, IS 2720, Part 24, Indian Standards Institute, New Delhi, India, pp. 3–10.

    Google Scholar 

  • JCPDS.: 1994, Powder Diffraction File, Vol. 44, 7345-CD ROM (PDF 1-44). Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, Newton Square, PA.

    Google Scholar 

  • Lo, I. M. C. and Hu, L. M.: 2004, Long-Term Migration of Light Nonaqueous-Phase Liquids in two Unsaturated Soils: Clayey Silt and Fine Sand, Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, ASCE, pp. 228–237.

  • McKinley, J. D., Price, B. A., Lynch, R. J. and Schofield, A. N.: 1998, ‘Centrifuge modelling of the transport of a pulse of two contaminants through a clay layer’, Geotechnique 48(3), 421–425.

    Article  Google Scholar 

  • Mitchell, R. J.: 1994, ‘Matrix suction and diffusive transport in centrifuge models’, Can. Geotechn. J. 31, 357–363.

    Google Scholar 

  • Rowe, R. K.: 1988, ‘Eleventh canadian geotechnical colloquium: Contaminant migration through groundwater —the role of modelling in the design of barriers’, Can. Geotechn. J. 25, 778–798.

    CAS  Google Scholar 

  • Rowe, R. K. and Badv, K.: 1996, ‘Chloride migration through clayey silt underlain by fine sand or silt’, J. Geotechn. Eng. ASCE 122(1), 60–68.

    Article  CAS  Google Scholar 

  • Rowe, R. K. and Booker, J. R.: 1985, ‘1-D pollutant migration in soils of finite depth’, J. Geotechn. Eng. ASCE 111(4), 479–499.

    Google Scholar 

  • Rowe, R. K., Caers, C. J., Booker, J. R. and Crooks, V. E.: 1985, ‘Pollutant migration through clay soils’, Proc. XI ICSMFE, Vol. 3, San Francisco, California, A. A. Balkema, Rotterdam, 1293–1298.

    Google Scholar 

  • Shackelford, C. D.: 1995, ‘Analytical Models Cumulative Mass Column Testing Geoenvironment 2000’, Vol. 1, ASCE, Geotechnical special publication No. 46, N. Y., 355–372.

    Google Scholar 

  • Shackelford, C. D. and Daniel, D. E.: 1991, ‘Diffusion in saturated soil. II: Results for compacted clay’, J. Geotechn. Eng. ASCE 117(3), 485–506.

    Google Scholar 

  • Sills, B. and Mitchell, R. J.: 1995, ‘A New Method for Studying Diffusion in Unsaturated Soil’, Geoenvironment 2000′, Vol. 1, ASCE, Geotechnical special publication No. 46, N. Y., 346–354.

    Google Scholar 

  • Singh, D. N. and Gupta, A. K.: 2000, ‘Permeability modelling in a small centrifuge’, Can. Geotechn. J. 37(5), 1150–1155.

    Article  Google Scholar 

  • Theriault, J. A. and Mitchell, R. J.: 1997, ‘Use of a modelling centrifuge for testing clay liner compatibility with permeants’, Can. Geotechn. J. 34, 71–77.

    Article  CAS  Google Scholar 

  • Wagner, A. A.: 1957, ‘The use of the unified soil classification system by the bureau of reclamation’, Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 1, Butterworths, London, pp. 125–134.

    Google Scholar 

  • Zimmie, T. F., Mahmud, M. B., and De, A.: 1994, ‘Accelerated physical modelling of radioactive waste migration in soil’, Can. Geotechn. J. 31, 683–691.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P.R. An Experimental Methodology for Monitoring Contaminant Transport Through Geotechnical Centrifuge Models. Environ Monit Assess 117, 215–233 (2006). https://doi.org/10.1007/s10661-006-0441-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-0441-x

Keywords

Navigation