Environmental Monitoring and Assessment

, Volume 121, Issue 1–3, pp 15–31 | Cite as

Ecotoxicological Classification of the Berlin River System Using Bioassays in Respect to the European Water Framework Directive

  • Gerd Huschek
  • P.-D. HansenEmail author


Bioassays as well as biochemical responses (biomarkers) in ecosystems due to environmental stress provide us with signals (environmentally signalling) of potential damage in the environment. If these responses are perceived in this early stage in ecosystems, the eventual damage can be prevented. Once ecosystem damage has occurred, the remedial action processes for recovery could be expensive and pose certain logistical problems. Ideally, “early warning signals” in ecosystems using sensing systems of biochemical responses (biomarkers) would not only tell us the initial levels of damage, but these signals will also provide us with answers by the development of control strategies and precautionary measures in respect to the European Water Framework Directive (WFD). Clear technical guidelines or technical specifications on monitoring are necessary to establish and characterise reference conditions for use in an ecological status classification system for surface water bodies. For the Ecotoxicological Risk Assessment (ERA) of endocrine effects we used an approach of the exposure – dose – response concept. Based on the “Ecototoxicological Classification System of Sediments” that uses pT-values to classify effects in different river systems, we transferred the bio-monitoring data to the five-level ecological system of the WFD. To understand the complexity of the structure of populations and processes behind the health of populations, communities and ecosystems an ERA should establish links between natural factors, chemicals, and biological responses so as to assess causality. So, our ecological monitoring assessment has incorporated exposure & effects data.


bioassay effect assessment ecotoxicological classification in sediment endocrine effects exposure of drugs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcock, S., Barcelo, D. and Hansen, P.-D.: 2003, ‘Monitoring freshwater sediments’, Biosensors and Bioelectronics 18, 1077–1083.CrossRefGoogle Scholar
  2. Bilitewski, U., Brenner-Weiß, Hansen, P.-D., Hock, B., Meulenberg, E., Müller, G., Obst, U., Sauerwein, H., Scheller, F. W., Schmid, R., Schnabl, G. and Spener, F.: 2000, ‘Bioresponse-linked instrumental analysis’, TRAC trends in analytical chemistry 19(7), 428–433.CrossRefGoogle Scholar
  3. Biyela, P. T., Lin, J. and Bezuidenhout, C. C.: 2004, ‘The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes’, Water Science & Technology 50(1), 45–50.Google Scholar
  4. Blaise, C., Gagne, F., Salazar, M., Salazar, S., Trottier, S. and Hansen, P.-D.: 2003, ‘Experimentally-induced feminisation of frehwater mussels after long-term exposure to a municipal effluent’, Fresenius Environmental Bulletin 12(8), 865–870.Google Scholar
  5. Borgmann, U.: 2000, ‘Assessing contaminated sediments: Is the sediment quality triad enough?’ SETAC Globe Newslett. 1(5), 35–36.Google Scholar
  6. Bresler, V., Bissinger, V., Abelson, A., Dizer, H., Sturm, A., Kraetke, R., Fishelson, L. and Hansen, P.-D.: 1999, ‘Marine molluscs and fish as biomarkers of pollution stress in littoral regions of the Red Sea, Mediterranean Sea and North Sea’, Helgol Mar Res 53, 219–243.CrossRefGoogle Scholar
  7. DIN 38415-1, Edition:1995–02, Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammun-tersuchung–Suborganismische Testverfahren (Gruppe T) – Teil 1: Bestimmung von Choline-sterase-hemmenden Organophosphat- und Carbamat-Pestiziden (Cholinesterase-Hemmtest) (T 1).Google Scholar
  8. EC – European Commission: 2003, COMMON IMPLEMENTATION STRATEGY FOR THE WATER FRAMEWORK DIRECTIVE (2000/60/EC), Guidance Document No. 7: Monitoring under the Water Framework Directive, Produced by Working Group 2.7 – Monitoring.Google Scholar
  9. ECVAM: 2003, European Centre for the Validation of Alternative Methods, Status report for toxicological methods,
  10. EU, 2000: “Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy” or short the EU Water Framework Directive.Google Scholar
  11. EC – European Commission: 2003, COMMON IMPLEMENTATION STRATEGY FOR THE WATER FRAMEWORK DIRECTIVE (2000/60/EC), Guidance Document No. 7: Monitoring under the Water Framework Directive, Produced by Working Group 2.7 – Monitoring.Google Scholar
  12. Hansen, P.-D.: 1995, Assessment of Ecosystem Health: Development of Tolls and Approches, In: Evaluating and Monitoring the Health of Large-Scale Ecosystems, Edited by Papport, D., Gaudet, C. and Calow, P., Serie I: Global Environmental Change, Vol. 28, Springer-Verlag Berlin, Heidelberg, New York, 195–217.Google Scholar
  13. Hansen, P.-D.: 1997, ‘Ecotoxicology and landscape planning’, Quality Assurance 5(3), 231–241.Google Scholar
  14. Hansen, P.-D., Dizer, H, Hock, B., Marx, A., Sherry, J., McMaster, M. and Blaise, Ch.: 1998, ‘Vitellogenin – a biomarker for endocrine disruptors’, Trends in Analytical Chemistry (TRAC), 17(7), 448–451.CrossRefGoogle Scholar
  15. Hansen, P.-D., 2003: Biomarkers, In: B. A. Markert, A. M. Breure and H. G. Zechmeister (eds.), Bioindicators & Biomonitors: Principles, Concepts and Applications, Elsevier, Amsterdam, Boston, London, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 203–220.CrossRefGoogle Scholar
  16. Hansen, P.-D., Huschek, G., et al.: 2005, Vorkommen und Wirkung von endokrin wirksamen Stoffen einschließlich von Sedimentuntersuchungen in Berliner Gewässern zur Einschätzung der Fortpflanzungsgefährdung der Berliner Fischbestände: Teil 1: Untersuchungen endokrine Wirkungen und Fischbestand; Teil 2: Sedimente und endokrine Wirkungen, Research Report Senate of Berlin, Water Authority – TU-Berlin, Faculty 6, Dept. of Ecotoxicology, pp 98.Google Scholar
  17. Hansen, P.-D. and Unruh, E.: 2005, ‘Triple Lux-B: Phagocytosis in Mussel Haemocytes’, Journal of Gravitational Physiology (in press).Google Scholar
  18. Hock, B.: 2002, Bioeffect Related Instrumental Analysis in Water, Analytica Conference 2002, 23.–25. April, Munich.Google Scholar
  19. Huschek, G. and Krengel, D.: 2003, Report: Mengenermittlung und Systematisierung von Arzneimittelwirkstoffen im Rahmen der Umweltprüfung von Human- und Tierarzneimitteln gem. § 28 AMG, Umweltbundesamt, FKZ 20067401.Google Scholar
  20. Huschek, G., Hansen, P.-D., Maurer, Hans H., Krengel, D. Krengel and Kayser, A.: 2004, ‘Environmental risk assessment of medicinal products for human use in respect to the recommendations of the European Commission’, Environmental Toxicology 19, 226–240.CrossRefGoogle Scholar
  21. Krebs, F.: 2000, Ökotoxikologische Bewertung von Baggergut aus Bundeswasserstraßen mit Hilfe der pT-Wert-Methode. Hydrologie und Wasserbewirtschaftung (HW) 44(6), 301–307 (2000).Google Scholar
  22. IMS Health, A. G.: 2002, Chemical Country Profile Germany, 2000–2001.Google Scholar
  23. REACH, 2004, The New EU Chemicals Legislation – REACH (Registration, Evaluation and Authorisation of Chemicals).
  24. Sherry, J. P., Gamble, A., Hodson, P., Salomon, K., Hock, B., Marx, A. and Hansen, P.-D.: 1999, Vitellogenin induction in fish as an indicator of exposure to environmental estrogens, In: S.S. Rao ed. Impact Assessment of Hazardous Aquatic Contaminants, Lewis Publishers, Boca Raton, London, New York, Washington, 6, 125–160.Google Scholar
  25. Seifert, M., Haindl, S., Hock B.: 1998, ‘In vitro analysis of xenoestrogens by enzyme linked receptor assay (ELRA)’, Adv Exp Med Biol 444, 113–117.CrossRefGoogle Scholar
  26. Stagg, R. M. and Addison, R. F.: 1995, ‘An inter-laboratory comparison of measurements of ethoxyresorufin O-deethylase activity in dab (Limanda limanda) liver’, Marine Environmental Research 40, 93–108.CrossRefGoogle Scholar
  27. Sturm, A. and Hansen, P.-D.: 1999a, ‘Altered Cholinesterases and Monooxygenase levels in Daphnia magna and Chironimus riparius exposed to Environmental Pollutants’, Ecotoxicology and Environmental Safety 42, 9–1.CrossRefGoogle Scholar
  28. Salazar, M. H. and Salazar, S. M.: 2004, The Need for Risk Assessment Based In situ Field Experiments to Characterize Exposure & Effects under Environmentally Realistic Conditions, SETAC 2004 – Portland Oregon – November 2004, Poster.Google Scholar
  29. Sturm, A., da Sila de Assis, H. C. and Hansen, P.-D.: 1999, ‘Cholinesterases of marine teleost fish: Enzymological characterisation and potential use in the monitoring of neurotoxic contamination’, Marine Environmental Research 47, 389–398.CrossRefGoogle Scholar
  30. TGD: 2003, Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market.
  31. Vethaak, A. D., Rijs G. B. J., Schrap S. M., Ruiter H., Gerritsen A. and Lahr J.: 2002, Estrogens and xeno-estrogens in the aquatic environment of the Netherlands” – occurrence, potency and biological effects, RIZA/RIKZ-report no. 2002.001.Google Scholar
  32. Westernhagen, H. V., Krüner, G. and Broeg, K.: 1999, ‘Ethoxyresorufin O-deetylase (EROD) activity in the liver of dab (Limanda limanda L.) and flounder (Platichthys flsus L.) from the German Bight’, Helgol. Mar. Res. 53, 244–249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of EcotoxicologyTechnische Universität Berlin, Faculty VIBerlinGermany

Personalised recommendations