Environmental Monitoring and Assessment

, Volume 121, Issue 1–3, pp 1–14 | Cite as

The Comparison of Phosphorus Pools from the Sediment in Two Bays of Lake Dianchi for Cyanobacterial Bloom Assessment

  • Jun Hu
  • Yongding Liu
  • Jiantong LiuEmail author


The different pools in the sediment from two bays with different scales of cyanobacterial bloom were studied to assess the trophic status. With large scale of cyanobacterial bloom in Haigeng bay the concentrations of different phosphorus fractions were higher than the corresponding concentrations in Macun bay, and especially WSP and AAP are the most evident, which indicates that there are more available and potential available phosphorus in Haigeng bay. The adsorption experiment also shows that the sediment in Haigeng bay is more saturated than that in Macun bay. Haigeng bay can be faced with the more serious ecological danger. Furthermore the death and deposit of a mass of algae can contribute to phosphorus released from sediment and help to the breakout of newborn cyanobacterial blooms.


adsorption capacity cyanobacterial bloom fractionation phosphorus sediment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, Jens Moller: 1975, ‘Influence of pH on release of phosphorus from lake sediments’, Archives fur Hydrobiologia 76, 411–419.Google Scholar
  2. Baldock, J. A. and Skjemstad, J. O.: 1999, ‘Soil Organic Carbon/Soil Organic Matter’, in: K. I. Peverill, L. A. Sparrow and D. J. Reuter (eds), Soil Analysis: an Interpretation Manual, CSIRO Publishing, Collingwood, pp. 159–170.Google Scholar
  3. Boström Bengt, Jens M. Andersen, Siegfried Fleischer and Mats Jasson: 1988, ‘Exchange of phosphorus across the sediment-water interface’, Hydrobiologia 170, 229–244.CrossRefGoogle Scholar
  4. Boström, B. and Pettersson, K.: 1982, ‘Different patterns of phosphorus release from lake sediments in laboratory experiments’, Hydrobiologia 92, 415–429.CrossRefGoogle Scholar
  5. Boström, B.: 1986, ‘The role of microcystis colonies, its mucilage and associated bacteria, for nutrient fluxes from sediments to lake water – A working hypothesis’, in: M. Enell, W. Graneli and L. A. Hansson (eds), 13th Nordic Symposium on Sediments, ISSN 0348-0798. pp. 6–8.Google Scholar
  6. Butkus, S. R., Welch, E. B., Horner, R. R. and Spyridakis, D. E.: 1988, ‘Lake response modeling using biologically available phosphorus’, Journal of Water Pollution Control Federation 60, 1663–1669.Google Scholar
  7. Dorich, R. A., Nelson, D. W. and Sommers, L. E.: 1980, ‘Algal availability of sediment phosphorus in drainage water of the Black Creek watershed’, Journal of Environmental Quality 9, 557-563.CrossRefGoogle Scholar
  8. Dorich, R. A., Nelson, D. W. and Sommers, L. E.: 1984, ‘Availability of phosphorus to algae from eroded soil fraction’, Agriculture, Ecosystems and Environment 11, 253–264.CrossRefGoogle Scholar
  9. Gibson, C. E., Wang, G., Foy, R. H. and Lennox, S. D.: 2001, ‘The importance of catchment and Lake Processes in the phosphorus budget of a large lake’, Chemosphere 42, 215–220.CrossRefGoogle Scholar
  10. Golterman, H.L.: 1976, ‘Sediment as a source of phosphorus for algal growth in H.LL’, in: Golterman (ed.) Proc. Symp. On Interaction Between Sediments and Freshwater, pp. 286–293.Google Scholar
  11. Golterman, H. L.: 1975, ‘Physiological Limnology’, Elsevier Sci. Publ. Co. Amsterdam. 489 pp.Google Scholar
  12. Hazelton, P. A. and Murphy, B. W. (eds.): 1992, What do All the Numbers Mean? A Guide for the Interpretation of Soil Test Results, NSW Department of Conservation and Land Management (incorporating the Soil Conservation Service of NSW), Sydney.Google Scholar
  13. Hesse, P. R. (ed.): 1971, A Textbook of Soil Chemical Analysis. John Murray, London, pp. 255–300.Google Scholar
  14. Hieltjes, A. H. M. and Lijklema, L.: 1980. ‘Fractionation of inorganic phosphates in calcareous sediments’, Journal of Environmental Quality 8, 130–132.Google Scholar
  15. Holtan, H., Kamp-Nielsen, L. and Stuanes, A. D.: 1988, ‘Phosphorus in soil, water and sediment, an overview’, Hydrobiologia 170, 19–34.CrossRefGoogle Scholar
  16. Jacoby, J. M., Lynch, D. D., Welch, E. B. and Perkins, M. A.: 1982, ‘Internal phosphorus loading in a shallow eutrophic lake’, Water Resources Research 16, 911–919.CrossRefGoogle Scholar
  17. Kaiserli, A., Voutsa, D. and Samara, C.: 2002, Phosphorus Fractionation in Lake Sediments – Lakes Volvi and Koronia, N. Greece, Chemosphere, Volume 46, Issue 8, March 2002, pp. 1147-1155.Google Scholar
  18. Liu Su Mei, Zhang Jing, and Li Dao Ji: 2004, ‘Phosphorus cycling in sediments of the Bohai and Yellow Seas’, Estuarine, Coastal and Shelf Science 59, 209–218.CrossRefGoogle Scholar
  19. Miller, W. E. et al.: 1978, The Selenastum Capricornutum Priniz Algal Assay Bottle Tet, U.S. Environmental protection Agency, EPA-600/q-78-018.Google Scholar
  20. Mitchell, S. F.: 1989, ‘Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes’, Aquat. Bot. 33, 101–110.CrossRefGoogle Scholar
  21. Olsen, S. R. and Sommers, L. E.: 1982. ‘Phosphorus’. in: A. L. Page et al. (ed.), Methods of Soil Analysis. Part 2. 2nd ed. Agronomy Monogr. 9. ASA and SSSA, Madison, WI, pp. 403–430.Google Scholar
  22. Olsen, S. R., Cole, C. V., Watanabe, F. S. and Dean, L. A.: 1954, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate, USDA Circular 939. U.S. Government Printing Office, Washington D.C.Google Scholar
  23. Perkins, R. G. and Underwood, G. J. C.: 2001, ‘The potential for phosphorus release across the sediment-water interface in eutrophic reservoir dosed with ferric sulphate’, Water Research 35(6), 1399–1406.CrossRefGoogle Scholar
  24. Persson, G.: 1980, Biologiskt Relevanta Former av Fosfor, Progress Report to the Swedish Environmental Protection Board. Unpubl. ms. Institute of Limnology, Uppsala. 31 pp.Google Scholar
  25. Pote, D. H., Daniel, T. C., Sharpley, A. N., Moore, P. A. Jr., Edwards, D. R. and Nichols, D. J.: 1996, ‘Relating extractable soil phosphorus to phosphorus losses in runoff’, Soil Science Society of America Journal 60, 855–859.CrossRefGoogle Scholar
  26. Pote, D. H., Daniel, T. C., Moore, P. A. Jr., Sharpley, A. N., Edwards, D. R. and Nichols, D. J.: 1995, ‘Phosphorus: Relating soil tests to runoff concentrations across five soil series’, Agronomy Abstracts, American Society of Agronomy, Madison, WI, p. 294.Google Scholar
  27. Preston, T., Stewart, W. D. P. and Reynolds, C. S.: 1980, ‘Bloomforming cyanobacterium Microcystis aeruginosa overwinters on sediment surface’, Nature, 288, 365–367.CrossRefGoogle Scholar
  28. Psenner, R., Pucsko and Sager, M.: 1985, ‘Fraktionierung organischer und anorganischer Phosphorverbindungen von Sediment. Versuch einer Definition oekologisch wichtiger Fraktionen’, Archives Hydrobiologia 70(Suppl.), 111–115.CrossRefGoogle Scholar
  29. Ramm K. and Scheps V.: 1997, ‘Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release’, Hydrobiologia 342/343, 45–53.Google Scholar
  30. Redshaw, C. J., Mason, Hayes, C. R. and Roberts, R. D.: 1990, ‘Factors influencing phosphate exchange across the sediment-water interface of eutrophic reservoirs’, Hydrobiologia 192, 233–254.CrossRefGoogle Scholar
  31. Sonzogni, W. C., Chapra, S. C., Armstrong, D. E. and Logan, T. J.: 1982, ‘Bioavailability of technique for assessment of reversibly adsorbed phosphate’, Soil Science Society of America Journal 51, 599–604.Google Scholar
  32. Van der Molen, D. T., Portielje, R., Boers, P. C. M. and Lijklema, L.: 1998, ‘Changes in sediment phosphorus as a result of eutrophication and oligotrophication in Lake Veluwe, The Netherlands’, Water Research 32, 3281–3288.CrossRefGoogle Scholar
  33. Xie, L. Q., Xie, P. and Tang, H. J.: 2003, ‘Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms – an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake’, Environ Pollut. 122(3), 391–399.CrossRefGoogle Scholar
  34. Zhou, Q., Gibson, C. E. and Zhu, Y.: 2001, ‘Evaluation of phosphorus bioavailability in sediment of three contrasting lakes in China and the UK’, Chemosphere 42, 221–225.CrossRefGoogle Scholar
  35. Hu, J., Wu Yonghong, Liu Yongding and Liu Jiantong.: 2005, Distribution regular of phosphorus and iron in the typical areas of Lake Dianchi', Environmental Chemistry 7.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of HydrobiologyChinese Academy of SciencesWuhanChina

Personalised recommendations