Environmental Monitoring and Assessment

, Volume 100, Issue 1–3, pp 71–88 | Cite as

Distribution of heavy metals in Penaeus Semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage

  • N. Pourang
  • J. H. Dennis
  • H. Ghourchian


The study was conducted between January and December 2002. The main objective of this study was evaluation of effects of refrigerated storage duration on redistribution of three trace elements (Cd, Cu and Zn) in tissues (exoskeleton, abdominal muscle and hepatopancreas) of a shrimp species (Penaeus semisulcatus). Moreover, the possible roles of metallothionein (a kind of metalloprotein) in redistribution of the elements in tissues of the selected species were assessed. The specimens were sampled from northwestern part of the Persian Gulf. The concentrations of metals in the tissues were measured using Inductively Coupled Plasma-Optical Emission Spectrophotometer (ICP-OES). Metallothionein levels were determined by Differential Pulse Polarography (DPP) method. pH of the muscle samples was also measured in different stages. Different statistical methods were used for interpretation of the results. There were no size-dependent differences in metal contents of the species. The results were compared with specimens from other areas of the world and existing guidelines and limits. Concentrations of the metals in the muscle (0.103, 3.418 and 8.977 µg g−1 wet weight in the case of Cd, Cu and Zn, respectively) samples were below the most guidelines for human consumption. The results were in general agreement with those obtained by some other researchers. There were highly significant differences between sexes in Zn and Cu contents. Levels of Zn in females were significantly higher than males. The reverse case observed for Cu. The highest mean Cu and Zn concentrations (15.939 and 43.394 µg g−1 wet weight, respectively) were found in hepatopancreas samples, but the highest level of Cd (0.790 µg g−1 wet weight) was observed in exoskeleton. There were significant differences between the fresh and refrigerated samples from accumulation of Cd and Zn in tissues point of view, which can be attributed to the metal binding properties of metallothioneins as well as their degradation during the storage.


metallothionein Persian Gulf redistribution shrimp storage trace elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M. B., Preslan, J. E., Jolibois, L., Bollinger, J. E., George, W. G. 1997Bioaccumulation of lead nitrate in red swamp cryfish (Procambarus clarkii) J. Hazard. Mater.541529Google Scholar
  2. Anon: 1986, ‘Assessment of the Present State of Pollution by Cadmium, Copper, Zinc and Lead in the Mediterranean Sea’, UNEP/WG.144/11 submitted to the Fourth Meeting of the Working Group for Scientific and Technical Cooperation for MED POL, 41 pp.Google Scholar
  3. Anon: 1993, ‘Monitoring and surveillance of non-radioactive contaminats in the aquatic environment and activities regulating the disposal of wastes at the sea’, Aquatic Environment Monitoring Report No. 36, Ministry of Agriculture, Fisheries and Food, LOWESTOFT, 78 pp.Google Scholar
  4. Balkas, T. I., Tuğrul, S., Salihoğlu, I. 1982Trace metal levels in fish and crustaceans from northeastern Mediterranean coastal watersMar. Environ. Res.6281289Google Scholar
  5. Berntssen, M. H. G., Hylland, K., Wendelaar Bonga, S. E., Maage, M. 1999Toxic levels of dietary copper in Atlantic salmon (Salmo salar L.)parr. Aquat. Toxicol.468799Google Scholar
  6. Biney, C. A., Ameyibor, E. 1992Trace metal concentrations in the pink shrimp Penaeus notialis, from the coast of GhanaWater Air Soil Pollut.63273279Google Scholar
  7. Bliss, D. E. 1993The Biology of Crustacea: Internal Anatomy and Physiological Regulation5457Google Scholar
  8. Brouwer, M., Brouwer-Hoexum, T., Cashon, R. 1992Crustaceans as models for metal metabolism: III. Interaction of lobster and mammalian metallothionein with glutathioneMarine Environ. Res.351317Google Scholar
  9. Burger, J., Lord, C., McGrath, L., Gaines, K., Brisbin, I., Gochfeld, M., Yurkow, E. 2000Metals and metallothionein in the liver of raccoons: Utility for environmental assessment and monitoringJ. Toxicol. Environ. Health.60243261Google Scholar
  10. Canli, M., Stagg, R. M., Rodger, G. 1997The induction of metallothionein in tissues of the Norway Lobster Nephrops norvegicus following exposure to cadmium, copper and zinc: The relationships between metallothionein and the metalsEnviron. Pollut.96343350Google Scholar
  11. Collings, S. E., Johnson, M. S., Leah, R. T. 1996Metal contamination of angler-caught fish from the Mersey EstuaryMarine Environ. Res.41281297Google Scholar
  12. Dall, W., Moriarty, J. W. 1983Functionl aspects of nutrition and digestionBiol. Crustacea5215261Google Scholar
  13. Daniel, W. W. 1977Introductory Statistics with ApplicationsHoughton MifflinBoston158Google Scholar
  14. Darmono, D., Denton, G. R. W. 1990Heavy metal concentrations in the banana prawn, Penaeus merguiensis, and leader prawn, P. monodon, in the Townsville Region of AustraliaBull. Environ. Contam. Toxicol.44479486Google Scholar
  15. Dunn, M. A., Blalock, T. L., Cousins, R. J. 1987MetallothioneinProc. Soc. Exp. Biol. Med.185107119Google Scholar
  16. Engel, D. W., Brouwer, M. 1984Trace metal-binding proteins in marine molluscs and crustaceansMarine Environ. Res.13177194Google Scholar
  17. Engel, D. W., Brouwer, M. 1987Metal regulation and molting in the blue crab, Callinectes sapidus: Metallothionein function in metal metabolismBiol. Bull.173239251Google Scholar
  18. Engel, D. W., Brouwer, M. 1991Short-term metallothionein and copper changes in blu crabs at ecdysisBiol. Bull.180447452Google Scholar
  19. Engel, D. W. 1993Crustaceans as models for metal metabolism: I. Effects of the molt cycle on blue crab metal metabolism and metallothioneinMarine Environ. Res.3515Google Scholar
  20. Francesconi, K. A., Moore, E. J., Joll, L. M. 1993Cadmium in saucer scallop, Amusium balloti, from western Australian waters: Concentrations in adductor muscle and redistribution following frozen storageAust. J. Mar. Freshw. Res.44457479Google Scholar
  21. Francesconi, K. A., Pedersen, K. L., Hojrup, P. 1998Sex specific accumulation of Cd-metallothionein in the abdominal muscle of coral prawn Metapenaeopsis crassissima from a natural populationMarine Environ. Res.46541544Google Scholar
  22. Frenet, M., Alliot, A. 1985Comparative bioaccumulation of metals in Palaemonates varians in polluted and non-poliuted environmentsMarine Environ. Res.171944Google Scholar
  23. Green, R. H. 1979Sampling Design and Statistical Methods for Environmental BiologistsJohn Wiley & SonsUSA257Google Scholar
  24. Guhathakurta, H., Kaviraj, A. 2000Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parsia) in some brackish water ponds of Sunderban, IndiaMarine Pollut. Bull.40914920Google Scholar
  25. Hamer, D. 1986MetallothioneinAnn. Rev. Biochem.55913951Google Scholar
  26. Hamza-Chaffai, A., Pellerin, J., Amiard, J. C. 2003Health assessment of a marine bivalve Ruditapes decussates from the Gulf of Gabes (Tunisia)Environ. Inter.28609612Google Scholar
  27. Hogstrand, C., Lithner, G., Haux, C. 1989Relationship between metallothionein, copper and zinc in perch (Perca fluviatilis) environmentally exposed to heavy metalsMarine Environ. Res.28179182Google Scholar
  28. Hogstrand, C., Haux, C. 1990Metallothionein as an indicator of heavy metal exposure in two subtropical fish speciesJ. Exp. Marine Biol. Ecol.1386984Google Scholar
  29. Ismail, A., Jusoh, N. R., Ghani, I. A. 1995Trace metal concentrations in marine prawns off Malaysian coastMarine Pollut. Bull.31108110Google Scholar
  30. Jeckel, W. H., Roth, R. R., Ricci, L. 1996Patterns of trace metal distribution in tissues of Pleoticus muelleri (Crustacea: Decapoda: Solenoceridae)Marine Biol.125297306Google Scholar
  31. Joseph, K. O., Srivastava, J. P. 1992Heavy metal load in prawn, Penaeus indicus (H. Milne Edwards) inhabiting Ennor Estuary in MadrasJ. Inland Fish. Soc. India243033Google Scholar
  32. Kägi, J. H. R., Kojima, Y. 1987Chemistry and biochemistry of metallothioneinExperientia Suppl.522561Google Scholar
  33. Kägi, J. H. R., Schäffer, A. 1988Biochemistry and metallothioneinBiochemistry2785098515PubMedGoogle Scholar
  34. Keenan, S., Alikhan, S. 1991Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab.) (Decapoda, Crustacea) from an acidic and neutral lakeBull. Environ. Contam. Toxicol.479196Google Scholar
  35. Kureishy, T.W. 1993Concentration of heavy metals in marine organisms around Qatar before and after the Gulf war oil spillMarine Pollut. Bull.27183186Google Scholar
  36. Lewis, A. 1992The Biological Importance of Copper: A Literature ReviewInternational Copper Association, Ltd.New York400Google Scholar
  37. Madany, I. M., Wahab, A. A., Al-Alawi, Z. 1996Trace metals concentrations in marine organisms from the coastal areas of Bahrain, Arabian GulfWater, Air Soil Pollut.91233248Google Scholar
  38. Maher, W. A. 1986Trace metal concentrations in marine organisms from St. Vincent Gulf, south AustraliaWater, Air Soil Pollut.297784Google Scholar
  39. Méndez, L., Acosta, B., Palacois, E., Magallón, F. 1997Effect of stocking densities on trace metal concentration in three tissues of brown shrimp Penaeus californiensis Aquaculture1562134Google Scholar
  40. Merian, E. 1991Metals and their Compounds in the Environment Occurrence, Analysis and Biological RelevanceVCHWeinheim704Google Scholar
  41. Moksnes, P., Lindahl, U., Haux, C. 1995Metallothionein as a bioindicator of heavy metal exposure in tropical shrimp, Penaeus vannamei: A study of dose-dependent inductionMarine Environ. Res.39143146Google Scholar
  42. Moore, J. W. and Ramamoorthy, S.: 1984, Heavy Metals in Natural Waters, Springer-Verlag, pp. 268.Google Scholar
  43. Mormede, S., Davies, I. M. 2001Heavy metal concentrations in commercial deep-sea fish from Rockall troughContinental Shelf Res.21899916Google Scholar
  44. Nauen, C. E.: 1983, ‘Compilation of legal limits for hazardous substances in fish and fishery products’, FAO Fisheries Circular No. 764, Rome, Italy, pp. 102.Google Scholar
  45. Olafson, R. W., Sim, R. G. 1979An electrochemical approach to quantification and characterization of metallothioneinAnal. Biochem.100343351Google Scholar
  46. Olafson, R. W. 1981Differential pulse polarographic determination of murine metallothionein induction kineticsJ. Biol. Chem.25612631268Google Scholar
  47. Olafson, R. W., Olsson, P. E. 1991Electrochemical detection of metallothioneinMeth. Enzymol.205205215CrossRefGoogle Scholar
  48. Otvos, J. D., Olafson, R. W., Armitage, M. 1982Structure of an invertebrate metallothionein from Scylla serrata J. Biol. Chem.25724272431Google Scholar
  49. Otvos, J. D., Petering, D. H., Shaw, C. F. 1989Structure-reactivity relationships of metallothionein, a unique metal-binding proteinComments Inorg. Chem9135Google Scholar
  50. Overnell, J. 1982A method for the isolation of metallothionein from the hepatopancreas of the Crab Cancer pagurus that minimizes the effect of the tissue proteasesCompar. Biochem. Physiol.73B547553Google Scholar
  51. Paez-Osuna, F., Perez-Gonzalez, R., Izaguirre-Fierro, G., Zaazueta-Padilla, H. M., Flores-Campana, L. M. 1995Trace metal concentrations and their distribution in the lobster Panulirus inflatus (Bouvier, 1895) from the Mexican pacific coastEnviron. Pollut.9016370Google Scholar
  52. Paez-Osuna, F., Ruiz-Fernandez, C. 1995Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environmentsEnviron. Pollut.87243247Google Scholar
  53. Paez-Osuna, F., Tron-Mayen, L. 1995Distribution of heavy metals in tissues of shrimp Penaeus californiensis from the northwest coast of MexicoEnviron. Contam. Toxicol.55209215Google Scholar
  54. Pastor, A., Hernández, F., Peris, M. A., Beltrán, J., Sancho, J. V., Castillo, M. T. 1994Levels of heavy metals in some marine organisms from the western Mediterranean Area (Spain)Marine Pollut. Bull.285053Google Scholar
  55. Pourang, N., Amini, G. 2001Distribution of trace elements in tissues of two shrimp species from Persian Gulf and effects of storage temperature on elements transportationWater, Air Soil Pollut.129229243Google Scholar
  56. Pourang, N., Dennis, J. H., Ghourchian, H. 2004Tissue distribution and redistribution of trace elements in shrimp species with emphasis on the roles of metallothionein: A short reviewJ. Ecotoxicol.13519533Google Scholar
  57. Radojević, M., Bashkin, V. N. 1999Practical Environmental AnalysisThe Royal Society of ChemistryUK466Google Scholar
  58. Rees, D. G. 1991Essential StatisticsChapman and HallLondon258Google Scholar
  59. Roesijadi, G. 1992Metallothioneins in metal regulation and toxicity in aquatic animalsAquat. Toxic.2281114Google Scholar
  60. Roesijadi, G. 1996Metallothionein and its role in toxic metal regulationCompar. Biochem. Physiol.113C117123Google Scholar
  61. Sadiq, M., Zaidi, T. H., Hoda, A., Mian, A. A. 1982Heavy metal concentrations in shrimp, crab and sediment obtained from AD - Dammam sewage outfall areaBull. Environm. Contam. Toxicol.29313319Google Scholar
  62. Santovito, G., Irato, P., Piccinni, E., Albergoni, V. 2000Relationship between metallothionein and metal contents in red-blooded and white-blooded Antarctic teleostsPolar Biol.23383391Google Scholar
  63. Schlenk, D., Ringwood, A. H., Brouwer-Hoexum, T., Brouwer, M. 1993Crustaceans as models for metal metabolism: II. Induction and characterization of metallothionein isoforms from the blue crab (Callinectes sapidus)Marine Environ. res.35711Google Scholar
  64. Shearer, M.A., Fletcher, G. L. 1984The relationship between metallothionein and intestinal zinc absorption in the winter flounderCan. J. Zool.6222112230CrossRefGoogle Scholar
  65. Simkiss, K., Taylor, M. G. 1995Transport of Metals Across Membranes. Metal Speciation and Bioavailability in Aquatic systemsJohn Wiley and Sons LtdChichester144Google Scholar
  66. Sokal, R. R., Rohlf, F. J. 1981Biometry2nd Freeman and Co.San Francisco, California859Google Scholar
  67. Steel, R. G. D., Torrie, J. H. and Dickey, D. A.: 1997, ‘Principles and Procedures of Statistics. A Biometrical Approach, 3rd ed., McGraw-Hill, Publisher, pp. 672.Google Scholar
  68. Steenkamp, V. E., Preeze, H. H., Schoonbee, H. J., Eden, P. H. 1994Bioaccumulation of manganese in selected tissues of the freshwater crab, Potamonautes warreni (Calman), from industrial and mine-polluted freshwater ecosystemsHydrobiologia288137150Google Scholar
  69. Viarengo, A., Ponzano, E., Dondero, F., Fabbri, R. 1997A Simple spectrophotometric method for metallothionein evaluation in marine organisms: An application to Mediterranean and Antarctic MolluscsMarine Environ. res.446984Google Scholar
  70. White, S.L., Rainbow, P. S. 1986A Preliminary Study of Cu-, Cd- and Zn- binding components in the Hepatopancreas of Palaeman elegans (Crustacea: Decapoda)Compar. Biochem. Physiol.83C111116Google Scholar
  71. Zar, J.H. 1999Biostatistical Analysis4th ed.Prentice-Hall, Inc.Englewood Cliffs, New Jersey718Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Environmental ScienceUniversity of BradfordBradfordUK
  2. 2.Department of Environment and Sustainable AgricultureMinistry of Jahad-e-AgricultureTehranIran
  3. 3.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran

Personalised recommendations