Skip to main content

Advertisement

Log in

Efficacy of a Biomonitoring (Moss Bag) Technique for Determining Element Deposition Trends on a Mid-Range (375 Km) Scale

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

National networks detect multi-state trends in element deposition using direct measurement methods. Biomonitoring techniques have been used to examine deposition in local areas and around point sources. We sought to determine the efficacy of a moss bag technique to detect element deposition trends on a mid-range (state) scale, and to compare these results with those of the National Acid Deposition Program/National Trends Network (NADP/NTN, 1999). We sampled heavy metals, sulfur, and nitrogen deposition (21 elements) using mesh bags containing Sphagnum russowii at nine sites, over a 375 km transect crossing southern Wisconsin (upper Midwest, USA). We found statistically significant trends of decreasing deposition in a northwesterly direction for 13 elements: Al, B, Ca, Cd, Co, Cu, Cr, Fe, Mg, Mn, Ni, S, and Zn. Six of these have moderate to large changes in concentration (14–37%). The trends for Ca, Mg, and S are consistent with regional deposition patterns in 1998 isopleth maps from the NADP/NTN (1999) which are derived from a sampling array far less dense than the transect sites. This national network indicates that Ca and Mg increase to the southeast, beyond Wisconsin borders. The fact that the present study demonstrates strong correlations between both of these elements (Ca and Mg) and Al, B, Cr, Cu, Fe, Mn, Ni, and Zn (mean r for all correlations = 0.75, p < 0.02) implies that these correlated elements also increase to the southeast in neighboring states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamo, P., Giordano, S., Vingiani, S., Castaldo Cobianchi, R. and Violante, P.: 2003, ‘Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy),’, Env. Pollut. 122 (1), 91–103.

    CAS  Google Scholar 

  • Al-Radady, A.S., Davies, B.E. and French, M.J.: 1993, ‘A new design of moss bag to monitor metal deposition both indoors and outdoors,’, Sci. Total Environ. 133(3), 275–283.

    CAS  Google Scholar 

  • Brown, D.H.: 1984, ‘Uptake of Mineral Elements and Their Use in Pollution Monitoring,’, in A.F. Dyer, J.G. Duckett (eds), The Experimental Biology of Bryophytes, Academic Press, Orlando, FL, pp. 229–255.

    Google Scholar 

  • Buonicore, A.J. and Davis, W.T. (eds): 1992, Air Pollution Engineering Manual, Air and Waste Management Association, Van Nostrand Reinhold, New York, 918 pp.

    Google Scholar 

  • Čeburnis, D. and Valiulis, D.: 1999, ‘Investigation of absolute metal uptake efficiency from precipitation in moss,’, Sci. Total Environ. 226(2/3), 247–253.

    Google Scholar 

  • Clough, W.S.: 1975, ‘The deposition of particles on moss and grass surfaces,’, Atmos. Environ. 9, 1113–1119.

    Google Scholar 

  • Clymo, R.S.: 1963, ‘Ion exchange in Sphagnum and its relation to bog ecology,’, Ann. Bot. 27, 309–324.

    CAS  Google Scholar 

  • Curtis, John T.: 1959, The Vegetation of Wisconsin, University of Wisconsin Press, pp. 657.

  • Draper, N.R. and Smith, H.: 1981, Applied Regression Analysis, 2nd ed., Wiley, New York, pp. 709.

    Google Scholar 

  • EPA: 1995, AP-42, 5th ed., US EPA Office of Air Quality, Planning and Standards, pp. 1.1–1.33.

  • Fernández, J.A., Aboal, J.R. and Carballeira, A.: 2000a, ‘Use of native and transplanted mosses as complementary techniques for biomonitoring mercury around an industrial facility,’, Sci. Total Environ. 256(2/3), 151–161.

    Google Scholar 

  • Fernández, J.A., Rey, A. and Carballeira, A.: 2000b, ‘An extended study of heavy metal deposition in Galicia (NW Spain) based on moss analysis,’, Sci. Total Environ. 254, 31–44.

    Google Scholar 

  • Gailey, F.A.Y. and Lloyd, O.LI.: 1986, ‘Methodological investigations into low technology monitoring of atmospheric metal pollution: Part 3. The degree of replicability of the metal concentrations,’, Environ. Pollut. (Ser. B) 12, 85–109.

    CAS  Google Scholar 

  • Goodarzi, F., Sanei, H., Garrett, R.G. and Duncan, W.F.: 2002, ‘Accumulation of trace elements on the surface soil around the Trail smelter, British Columbia,’, Can. Environ. Geol. 43(1/2), 29–38.

    CAS  Google Scholar 

  • Hynninen, V.: 1986, ‘Monitoring of airborne metal pollution with moss bags near an industrial source at Harjavalta, southwest Finland,’, Ann. Bot. Fennici 23, 83–90.

    CAS  Google Scholar 

  • Knight, A.H., Crooke, W.M. and Inkson, R.H.E.: 1961, ‘Cation-exchange capacities of tissues of higher and lower plants and their related uronic acid contents,’, Nature 192, 142–143.

    CAS  Google Scholar 

  • Lodenius, M.: 1998, ‘Dry and wet deposition of mercury near a chlor-alkali plant,’, Sci. Total Environ. 213(1–3), 53–56.

    CAS  Google Scholar 

  • LeBlanc, F. and De Sloover, J.: 1970, ‘Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal,’, Can. J. Bot. 48, 1485–1496.

    Article  Google Scholar 

  • Makholm, M.: 2003, ‘Assessing Air Pollution Impacts: Biomonitoring with Lichens and Mosses’. Ph.D. Thesis, University of Wisconsin-Madison.

  • Midwest Regional Climatic Center (MRCC): 2001, http://mcc.sws.uiuc.edu/Introduction/data.html.

  • NADP/NTN: 1999, http://nadp.sws.uiuc.edu/.

  • Ott, W.R.: 1990, ‘A physical explanation of the lognormality of pollutant concentrations,’, J. Waste Manag. Assoc., 40(10) 1378–1383.

    CAS  Google Scholar 

  • Percy, K.E. and Borland, S.A.:1985, ‘A Multivariate analysis of element concentrations in Sphagnum magellanicum Brid. in the maritime provinces, Canada,’, Water Air Soil Pollut. 25, 331–338.

    CAS  Google Scholar 

  • Ruhling, A. and Tyler, G.:1970, ‘Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.),’, Br. et Sch. Oikos 21, 92–97.

    CAS  Google Scholar 

  • Snedecor, G.W. and Cochran, W.G.: 1980, Statistical Methods, 7th ed., Iowa State University Press, pp. 37, 280.

  • Steinnes, E., Rambæk, J.P. and Hanssen, J.E.: 1992, ‘Large scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor,’, Chemosphere 25(5), 735–752.

    CAS  Google Scholar 

  • Temple, P.J., McLaughlin, D.L., Linzon, S.N. and Wills, R.: 1981, ‘Moss bags as monitors of atmospheric deposition,’, J. Air Pollut. Control Assoc. 31, 668–670.

    Google Scholar 

  • Thoni, L., Schnyder, N. and Krieg, F.: 1996, ‘Comparison of metal concentrations in three species of mosses and metal freights in bulk precipitations,’, Fresenius J. Anal. Chem. 354, 703–708.

    Google Scholar 

  • Tyler, G.: 1990, ‘Bryophytes and heavy metals: A literature review,’, Bot. J. Linnean Soc. 104, 231–253.

    Google Scholar 

  • UW-Madison, Soil and Plant Analysis Lab.: 2003, http://uwlab.soils.wisc.edu.

  • Viskari, E.L., Rekila, R., Roy, S., Lehto, O., Ruuskanen, J. and Karenlampi, L.: 1997, ‘Airborne pollutants along a roadside: Assessment using snow analyses and moss bags,’, Environ. Pollut. 97(1/2), 153–160.

    CAS  Google Scholar 

  • Wegener, J.W.M., Van Schaik, M.J.M. and Aiking, H.: 1992, ‘Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses,’, Environ. Pollut. 76(1), 15–18.

    CAS  Google Scholar 

  • Winner, W.E., Atkinson, C.J. and Nash, T.H. III: 1988, ‘Comparisons of SO2 absorption capacities of mosses, lichens and vascular plants in diverse habitats,’, Bibl. Lichenol. 30, 217–230.

    Google Scholar 

  • Wisconsin Department of Natural Resources (WDNR): 1998, ‘Air Emissions Inventory Database’.

  • Xiao, Z., Sommar, J., Lindqvist, O., Tan, H. and He, J.: 1998, ‘Atmospheric mercury deposition on Fanjing Mountain Nature Reserve, Guizhou, China,’, Chemosphere 36(10), 2191–2200.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Makholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makholm, M.M., Mladenoff, D.J. Efficacy of a Biomonitoring (Moss Bag) Technique for Determining Element Deposition Trends on a Mid-Range (375 Km) Scale. Environ Monit Assess 104, 1–18 (2005). https://doi.org/10.1007/s10661-005-6398-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-6398-3

Keywords

Navigation