Skip to main content
Log in

Artificial Sampling Units: A Tool for Increasing the Sensitivity of Tests for Impact in Soft Sediments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The distribution of benthic organisms in soft sediments is patchy in time and space on many scales. Such variability makes assessment of ecological impacts difficult. Sediment-related variables, such as grain-size and organic content, which can affect colonization by infauna, vary over similar scales. Variations in characteristics of the sediment may contribute to spatial variability in infaunal assemblages, making it difficult to detect the putative impacts of disturbances, such as the production of boat-generated waves (wash), on these organisms. Here, the hypothesis that infaunal assemblages colonizing containers of homogeneous sedimentwould be less spatially variable than those colonizing natural sediment was tested. Containers were deployed at mudflats differing in exposure to wash. If wash does affect colonization, a reduction in variability among sites of similar exposure should enable stronger differences to be seen between wash and no-wash zones. Assemblages colonizing homogeneous sediment were less variable than those colonizing site-specific sediment. No difference in colonization was, however, seen between places differing in their exposure to wash. Nevertheless, this method is of use in the assessment of ecological impacts in sedimentary environments, where it is difficult to detect putative impacts above the great natural variability in assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson, M. J.: 2001, ‘A new method for non-parametric multivariate analysis of variance’, Aust. Ecol. 26, 32–46.

    Article  Google Scholar 

  • Barko, J. W., Gunnison, D. and Carpenter, S. R.: 1991, ‘Sediment interactions with submerged macrophyte growth and community dynamics’, Aquat. Bot. 41, 41–65.

    Article  Google Scholar 

  • Barry, J. P. and Dayton, P. K.: 1991, ‘Physical Heterogeneity and the Organization of Marine Communities’, in J. Kolasa and S. T. A. Pickett (eds.), Ecological Heterogeneity, Springer-Verlag, pp. 270–320.

  • Bell, R. G., Hume, T. M., Dolphin, T. J., Green, M. O. and Walters, R. A.: 1997, ‘Chracterization of physical environmental factors on an intertidal sandflat, Manukau Harbour, New Zealand’, J. Exp. Mar. Biol. Ecol. 216, 11–31.

    Article  Google Scholar 

  • Bell, S. S. and Devlin, D. J.: 1983, ‘Short-term macrofaunal recolonization of sediment and epibenthic habitats in Tampa Bay, Florida’, Bull. Mar. Sci. 33, 102–108.

    Google Scholar 

  • Bishop, M. J.: 2003, ‘Making Waves. The Effects of Boat-Wash on Macrobenthic Assemblages of Estuaries’, PhD Thesis, University of Sydney.

  • Bologna, P. A. X. and Heck, K. L. Jr.: 1999, ‘Macrofaunal associations with seagrass epiphytes. Relative importance of trophic and structural characteristics’, J. Exp. Mar. Biol. Ecol. 242, 21-39.

    Article  Google Scholar 

  • Bray, J. R. and Curtis, J. T.: 1957, ‘An ordination of the upland forest communities of Southern Wisconsin’, Ecol. Monogr. 27, 325–349.

    Google Scholar 

  • Butman, C. A.: 1987, ‘Larval settlement of soft-sediment invertebrates: The spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamic processes’, Oceanogr. Mar. Biol. A. Rev. 25, 113–165.

    Google Scholar 

  • Cairns, J. Jr. and Pratt, J. R.: 1993, ‘A History of Biological Monitoring using Benthic Macroinvertebrates’, in D. M. Rosenberg and V. H. Resh (eds.), Freshwater Biomonitoring and Benthic macroinvertebrates, Chapman and Hall, New York, Routledge, pp. 10–27.

    Google Scholar 

  • Chapman, M. G.: 1998, ‘Relationships between spatial patterns of benthic assemblages in a mangrove forest using different levels of taxonomic resolution’, Mar. Ecol. Prog. Ser. 162, 71–78.

    Google Scholar 

  • Commito, J. A., Currier, C. A., Kane, L. R., Reinsel, K. A. and Ulm, I. M.: 1995a, ‘Dispersal dynamics of the bivalve Gemma gemma in a patchy environment’, Ecol. Monogr. 65, 1–20.

    Google Scholar 

  • Commito, J. A., Thrush, S. F., Pridmore, R. D., Hewitt, J. E. and Cummings, V. J.: 1995b, ‘Dispersal dynamics in a wind-driven benthic system’, Limnol. Oceanogr. 40, 1513–1518.

    Google Scholar 

  • Dean, W. E.: 1974, ‘Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods’, J. Sed. Petrol. 44, 242-248.

    Google Scholar 

  • Edgar, G. J.: 1991, ‘Artificial algae as habitats for mobile epifauna: Factors affecting colonization in a Japanese Sargassum bed’, Hydrobiologia 226, 111–118.

    Article  Google Scholar 

  • Emerson, C. W. and Grant, J.: 1991, ‘The control of the soft-shell clam (Mya arenaria) recruitment on intertidal sandflats by bedload sediment transport’, Limnol. Oceanogr. 36, 1288–1300.

    Google Scholar 

  • Gray, J. S.: 1974, ‘Animal–sediment relationships’, Oceanogr. Mar. Biol. Ann. Rev. 12, 223–261.

    Google Scholar 

  • Gray, J. S.: 1981, The Ecology of Marine Sediments. An Introduction to the Structure and Function of Benthic Communities, Cambridge University Press, Cambridge.

    Google Scholar 

  • Green, R. H.: 1979, Sampling Design and Statistical Methods for Environmental Biologists, Wiley/ InterScience, Chichester, England.

    Google Scholar 

  • Highsmith, R. C.: 1982, ‘Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites: Adult sand dollar beds’, Ecology 63, 329–337.

    Google Scholar 

  • Hurlbert, S. J.: 1984, ‘Pseudoreplication and the design of ecological field experiments’, Ecol. Monogr. 54, 187–211.

    Google Scholar 

  • Ishikawa, K.: 1989, ‘Relationship between bottom charcteristics and benthic organisms in the shallow water of Oppa Bay, Miyagi’, Mar. Biol. 102, 265–273.

    Article  Google Scholar 

  • Jones, N. S.: 1950, ‘Marine bottom communities’, Biol. Rev. 25, 283–313.

    Google Scholar 

  • Kruskal, J. B.: 1964, ‘Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis’, Psychometrika 29, 1–27.

    Google Scholar 

  • Levin, S. A.: 1992, ‘The problem of pattern and scale in ecology’, Ecology 73, 1943–1967.

    Google Scholar 

  • Morrisey, D. J., Howitt, L., Underwood, A. J. and Stark, J. S.: 1992a, ‘Spatial variation in soft-sediment benthos’, Mar. Ecol. Prog. Ser. 81, 197–204.

    Google Scholar 

  • Morrisey, D. J., Underwood, A. J., Howitt, L. and Stark, S. J.: 1992b, ‘Temporal variation in soft-sediment benthos’, J. Exp. Mar. Biol. Ecol. 164, 233–245.

    Article  Google Scholar 

  • Myers, A. A. and Southgate, T.: 1980, ‘Artificial substrates as a means of monitoring rocky shore cryptofauna’, J. Mar. Biol. Ass. U.K. 60, 963–975.

    Google Scholar 

  • Osenberg, C. W., Schmitt, R. J., Holbrook, S. J., Abu-Saba, K. E. and Flegal, A. R.: 1994, ‘Detection of environmental impacts: Natural variability, effect size and power analysis’, Ecol. App. 4(1), 16–30.

    Google Scholar 

  • Pawlik, J. R.: 1986, ‘Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta)’, Mar. Biol. 91, 59–68.

    Article  Google Scholar 

  • Peterson, C. H.: 1993, ‘Improvement of environmental impact analysis by application of principles derived from manipulative ecology: Lessons from coastal marine case histories’, Aust. J. Ecol. 18, 21–52.

    Google Scholar 

  • Pezeshki, S. R., Matthews, S. W. and Delaune, R. D.: 1991, ‘Root cortex structure and metabolic responses of Spartina patens to soil redox conditions’, Environ. Exp. Bot. 31, 91–97.

    Article  Google Scholar 

  • Probert, P. K.: 1984, ‘Disturbance, sediment stability, and trophic structure of soft-bottom communities’, J. Mar. Res. 42, 893–921.

    Google Scholar 

  • Rhoads, D. C.: 1974, ‘Organism–sediment relations on the muddy sea floor’, Oceanogr. Mar. Biol. Ann. Rev. 12, 263–300.

    Google Scholar 

  • Rhoads, D. C. and Young, D. K.: 1970, ‘The influence of deposit-feeding organisms on sediment stability and community trophic structure’, J. Mar. Res. 28(2), 150–178.

    Google Scholar 

  • Rosenberg, D. M. and Resh, V. H.: 1982, ‘The Use of Artificial Substrates in the Study of Freshwater Benthic Macroinvertebrates’, in J. Cairns (ed.), Artificial Substrates, Ann Arbor Science Publishers, Ann Arbor, MI, pp. 175–235.

    Google Scholar 

  • Scheltema, R. S.: 1974, ‘Biological interactions determining larval settlement of marine invertebrates’, Thalassia Jug. 10, 263–269.

    Google Scholar 

  • Shaw, D. W. and Minshall, G. W.: 1980, ‘Colonization of an introduced substrate by stream macroinvertebrates’, Oikos 34, 259–271.

    Google Scholar 

  • Shephard, R. N.: 1962, ‘The analysis of proximities: multidimensional scaling with an unknown distance function’, Psychometrika 27, 125–140.

    Google Scholar 

  • Snelgrove, P. V. R. and Butman, C. A.: 1994, ‘Animal–sediment relationships revisited: Cause versus effect’, Oceanogr. Mar. Biol. Ann. Rev. 32, 111–177.

    Google Scholar 

  • Sutherland, T. F., Amos, C. L. and Grant, J.: 1998, ‘The effect of carbohydrate production by the diatom Nitzschia curvileata on the erodibility of sediment’, Limnol. Oceanogr. 43(1), 65–72.

    Google Scholar 

  • Tamaki, A.: 1987, ‘Comparison of restivity to transport by wave action in several polychaete species on an intertidal sand flat’, Mar. Ecol. Prog. Ser. 37, 181–189.

    Google Scholar 

  • Thorson, G.: 1957, ‘Bottom Communities (Sublittoral or Shallow Shelf)’, in J. W. Hedgpeth (ed.), Treatise on Marine Ecology and Paleoecology: Vol. 1. Ecology; Geol. Soc. Am. Mem. 67, 461–534.

  • Thrush, S. F., Hewitt, J. E. and Pridmore, R. D.: 1989, ‘Patterns in the arrangement of polychetes and bivalves in intertidal sandflats’, Mar. Biol. 102, 529–535.

    Article  Google Scholar 

  • Thrush, S., Whitlatch, R. B., Pridmore, R. D., Hewitt, J. E., Cummings, V. J. and Wilkinson, M. R.: 1996, ‘Scale-dependent recolonization: The role of sediment stability in a dynamic sandflat habitat’, Ecology 77, 2472–2478.

    Google Scholar 

  • Underwood, A. J.: 1992, ‘Beyond BACI: The detection of environmental impacts on populations in the real, but variable, world’, J. Exp. Mar. Biol. Ecol. 161, 145–178.

    Article  Google Scholar 

  • Underwood, A. J.: 1993, ‘The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world’, Aust. J. Ecol. 18, 99–116.

    Google Scholar 

  • Underwood, A. J.: 1997, Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance, Cambridge University Press, United Kingdom.

    Google Scholar 

  • Williams, D. D.: 1980, ‘Temporal patterns in recolonization of stream benthos’, Arch. Hydrobiol. 90, 56–74.

    Google Scholar 

  • Yallop, M. L., Paterson, D. M. and Wellsbury, P.: 2000, ‘Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments’, Microb. Ecol. 39, 116–127.

    Article  PubMed  Google Scholar 

  • Zajac, R. N. and Whitlatch, R. B.: 1982, ‘Responses of estuarine infauna to disturbance. I. Spatial and temporal variation of intertidal recolonization’, Mar. Ecol. Prog. Ser. 10, 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie J. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, M.J. Artificial Sampling Units: A Tool for Increasing the Sensitivity of Tests for Impact in Soft Sediments. Environ Monit Assess 107, 203–220 (2005). https://doi.org/10.1007/s10661-005-5311-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-5311-4

Keyword

Navigation