Skip to main content
Log in

Arsenic Speciation Analysis in Water Samples: A Review of The Hyphenated Techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Interests in the determination of different arsenic species in natural waters is caused by the fact that toxic effects of arsenic are connected with its chemical forms and oxidation states. In determinations of water samples inorganic arsenate (As(III), As(V)), methylated metabolities (MMAA, DMAA) and other organic forms such as AsB, AsC, arsenosugars or arsenic containing lipids have the most importance. This article provides information about occurrence of the dominant arsenic forms in various water environments. The main factors controlling arsenic speciation in water are described. The quantification of species is difficult because the concentrations of different forms in water samples are relatively lowcompared to the detection limits of the available analytical techniques. Several hyphenated methods used in arsenic speciation analysis are described. Specific advantages and disadvantages of methods can define their application for a particular sample analysis. Insufficient selectivity and sensitivity of arsenic speciation methods cause searching for a new or modifications already existing techniques. Some aspects of improvement and modifications of the methods are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abdullah, M. I., Shiyu, Z. and Mosgren, K.: 1995, ‘Arsenic and selenium species in the oxic and anoxic waters of the Oslofjord, Norway’, Mar. Pollut. Bull. 31, 116–126.

    Article  Google Scholar 

  • Aggett, J. and Boyes, G.: 1989, ‘Investigation of the contribution of metal ion enhancement of the rate of hydrolysis of sodium tetraborate to interferences in the determination of As(III) by hydride generation atomic absorption spectrometry’, Analyst 114, 1159–1161.

    Article  Google Scholar 

  • Ali, I. and Aboul-Enein, H.: 2002, ‘Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography’, Chemosphere 48(3), 275–278.

    Article  PubMed  Google Scholar 

  • Andreae, M. O.: 1979, ‘Arsenic speciation in seawater and interstitial waters: The influence of biological–chemical interactions on the chemistry of a trace element’, Limnol. Oceanogr. 24, 440–452.

    Google Scholar 

  • Andreae, M. O. and Andreae, T. W.: 1989, ‘Dissolved arsenic species in the Schelde estuary and watershed’, Belgium Estuar. Coast. Shelf Sci. 29, 421–433.

    Article  Google Scholar 

  • Azcue, J. M. and Nriagu, J. O.: 1995, ‘Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario’, J. Geochem. Explor. 52, 81–89.

    Article  Google Scholar 

  • Ballin, U., Kruse, R. and Ruessel, H. A.: 1994, ‘Determination of total arsenic and speciation of arsenobetaine in marine fish by means of reaction-headspace gas chromatography utilising flame ionisation detection and element specific spectrophotometric determination’, Fresenius J. Anal. Chem. 350, 54–61.

    Article  Google Scholar 

  • Basu, A., Mahata, J., Gupta, S. and Giri, A. K.: 2001, ‘Genetic toxicology of a paradoxical human carcinogen, arsenic: A review’, Mutat. Res. 488(2), 171–194.

    PubMed  Google Scholar 

  • Bednar, A. J., Garbarino, J. R., Burkhardt, M. R., Ranville, J. F. and Wildeman, T. R.: 2004, ‘Field and laboratory arsenic speciation methods and their application to natural-water analysis’, Water Res. 38, 355–364.

    Article  PubMed  Google Scholar 

  • Braman, R. S. and Foreback, C. C.: 1973, ‘Methylated forms of arsenic in the environment’, Science 182(118), 1247–1249.

    PubMed  Google Scholar 

  • Branch, S., Ebdon, L. and O’Neill, P.: 1994, ‘Determination of arsenic species in fish by directly coupled high performance liquid chromatography-induced coupled plasma mass spectrometry’, J. Anal. Atom. Spectrom. 9, 33–37.

    Article  Google Scholar 

  • Brookins, D. G., 1988, Eh–pH Diagrams for Geochemistry, Springer-Verlag, Berlin.

    Google Scholar 

  • Burguera, M. and Burguera, J. L.: 1997, ‘Analytical methodology for speciation of arsenic in environmental and biological samples’, Talanta 44, 1581–1604.

    Article  Google Scholar 

  • Cabon, J. Y. and Cabon, N.: 2000, ‘Speciation of major arsenic species in seawater by flow injection hydride generation atomic absorption spectometry’, Fresenius J. Anal. Chem. 368(5), 484–489.

    Article  PubMed  Google Scholar 

  • Capelo, J. L., Lavilla, I. and Bendicho, C.: 2001, ‘Utlrasonic extraction followed by sonolysis–ozonolysis as a sample pretreatment method for determination of reactive arsenic toward sodium tetrahydroborate by flow-injection-hydride generation AAS’, Anal. Chem. 73, 3732–3736.

    Article  PubMed  Google Scholar 

  • Carrero, P., Malave, A., Burguera, J. L., Burguera, M. and Rondon, C.: 2001, ‘Determination of various arsenic species by flow injection hydride generatuin atomic absorption spectrometry: Investigation of the effects of the acid concentration of different reaction on the generation of arsines’, Anal. Chim. Acta 438(1–2), 195–204.

    Article  Google Scholar 

  • Chatterjee, A., Das, D., Mandal, B. K., Chowdhury, T. R., Samanta, G. and Chakraborty, D.: 1995, ‘Arsenic in groundwater in six districts of West Bengal, India: The biggest arsenic calamity in the world. Part 1. Arsenic species in drinking water and urine of the affected people’, Analyst 120, 643–656.

    Article  Google Scholar 

  • Chausseau, M., Roussel, C., Gilon, N. and Mermet, J. M.: 2000, ‘Optimization of HPLC-ICP-AES for the determination of arsenic species’, Fresenius’ J. Anal. Chem. 366(5), 476–480.

    Article  Google Scholar 

  • Chen, S. L., Yeh, S. J., Yang, M. H. and Lin, T. H.: 1995, ‘Trace element concentration and arsenic speciation in the well water of a Taiwan area with endemic Blackfoot disease’, Biol. Trace Elem. Res. 48, 263–274.

    PubMed  Google Scholar 

  • Code of Federal Regulations, 40 CFR 141.23. Available from: http://www.epa.gov/safe-water/ars/monovr.html

  • W. R. Cullen, K. J. Reimer. 1989;, Arsenic speciation in the environment 89713–764.

    Article  Google Scholar 

  • Cullen, W. R. and Reimer, K. J.: 1989, ‘Arsenic speciation in the environment’, Chem. Rev. 89, 713–764.

    Article  Google Scholar 

  • Cutter, G. A., Cutter, L. S., Featherstone, A. M. and Lohrenz, S. E.: 2001 ‘Antimony and arsenic biogeochemistry in the western Atlantic Ocean’ Deep-Sea Res. Part II – Topical Stud. Oceanog. 48 2895–2915.

    Google Scholar 

  • Del Razo, L. M., Styblo, M., Cullen, W. R. and Thomas, D. J.: 2001, ‘Determination of trivalent methylated arsenicals in biological matrices’, Toxicol. Appl. Pharmacol. 174(3), 282-293.

    Article  PubMed  Google Scholar 

  • Demesmay, C., Olle, M. and Porthault, M.: 1994, ‘Arsenic speciation by coupling high performance liquid chromatography with induced coupled plasma mass spectrometry’, Fresenius J. Anal. Chem. 348, 205–210.

    Article  Google Scholar 

  • Dasgupta, P. K., Hyang, H., Zhang, G. and Cobb, G.: 2002, ‘Photometric measurement of trace As(III) and As(V) in drinking water’, Talanta 58, 153-164.

    Article  Google Scholar 

  • Do, B., Robinet, S., Pradeau, D. and Guyon, F.: 2001, ‘Speciation of arsenic and selenium compounds by ion-pair reversed-phase chromatigraphy with electrothermic atomic absorption spectrometry’, J. Chromatogr. A. 918(1), 87–98.

    Article  PubMed  Google Scholar 

  • Dojlido, J. and Świetlik, R.: 1998, ‘Analiza śladowa wody’, in: A. Kabata-Pendias and B. Szteke (eds), Quality Problems in Trace Analysis in Environmental Studies, Warszawa, Poland, pp. 215-238.

  • DPHE-BGS/MML: 1999, Groundwater Studies for Arsenic Contamination in Bangladesh. Phase I: Rapid Investigation Phase. BGS/MML Technical Report to Department for International Development, UK, 6 volumes.

  • Emett, M. T. and Khoe, G. H.: 2001, ‘Photochemical oxidation of arsenic by oxygen and iron in acidic solutions’, Water Res. 35, 649–656.

    Article  PubMed  Google Scholar 

  • EPA.: 2001, ‘National Primary Drinking Water Regulations; arsenic and clarifications to compliance and newsource contaminants monitoring’, Fed. Register 66, 6975–7066.

    Google Scholar 

  • Featherstone, A. M., Boult, P. R., O’Grady, B. V. and Butler, E. C. V.: 2000, ‘A shipboard method for arsenic speciation using semi-automated hydride generation atomic fluorescence spectroscopy’, Anal. Chim. Acta 409, 215–226.

    Article  Google Scholar 

  • Feeney, R. and Kounaves, S. P.: 2000, ‘On site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array’, Anal. Chem. 72(10), 2222–2228.

    Article  PubMed  Google Scholar 

  • Gallagher, P. A., Schwegel, C. A., Wei, X. and Creed, J. T.: 2001, ‘Speciation and preservation of inorganic arsenic in drinking water sources using EDTA with IC separation and ICP-MS detection’, J. Environ. Monit. 3(4), 371–376.

    Article  PubMed  Google Scholar 

  • Gallagher, P. A., Shoemaker, J. A., Wei, X., Brockho-Schwegel, C. A. and Creed, J. T.: 2001, ‘Extraction and detection of arsenicals in seaweed via accelerated solvent extraction with ion-chromatographic separation and ICP-MS detection’, Fresenius J. Anal. Chem. 369, 71–80.

    Article  PubMed  Google Scholar 

  • Gettar, R. T., Garavaglia, R. N., Gautier, E. A. and Batistoni, D. A.: 2000, ‘Determination of inorganic and organic anionic arsenic species in water by ion chromatography coupled to hydride generation-inductively coupled plasma atomic emission spectrometry’, J. Chromatogr. A 884(1–2), 211–221.

    Article  PubMed  Google Scholar 

  • Gomez-Ariza, J. L., Sanchez-Rodas, D. and Giraldez, I.: 1998, ‘Selective extraction of iron oxide associated arsenic species from sediments for speciation with coupled HPLC-HG-AAS’, J. Anal. Atom. Spectrom. 13, 1375–1379.

    Article  Google Scholar 

  • Gong, Z., Lu X., Ma, M., Watt, C. and Le, X. C.: 2002, August 16, ‘Arsenic speciation analysis’, Talanta 58(1), 77–96.

    Google Scholar 

  • Guerin, T., Astruc, A. and Astruc, M.: 1999, ‘Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors: A review of the main separation techniques’, Talanta 50(1), 1–24.

    Article  Google Scholar 

  • Hall, G. E. M., Pelchat, J. C. and Gauthier, G.: 1999, ‘Stability of inorganic arsenic(III) and arsenic(V) in water samples’, J. Anal. Atom. Spectrom. 14, 205–213.

    Article  Google Scholar 

  • Hasegawa, H., Matsui, M., Okamura, S., Hojo, M., Iwasaki, N. and Sohrin, Y.: 1999, ‘Arsenic speciation including ‘hidden’ arsenic in natural waters’, Appl. Organometal. Chem. 13, 113–119.

    Article  Google Scholar 

  • He, B., Jiang, G. B. and Xu, X.: 2000, ‘Arsenic speciation based on ion exchange high-performance liquid chromatography hyphenated with hydride generation atomic fluorescence and on-line UV photo oxidation’, Fresenius J. Anal. Chem. 368(8), 803–808.

    Article  PubMed  Google Scholar 

  • He, Y., Zheng, Y., Ramnaraine, M. and Locke, D.: 2004, ‘Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples’, Anal. Chim. Acta 511, 55–61.

    Article  Google Scholar 

  • Hemmings, M. J. and Jones, E. A.: 1991, ‘The speciation of arsenic(V) and arsenic(III) by ion exchange chromatography in solutions containing iron and sulphuric acid’, Talanta 38, 151-156.

    Article  Google Scholar 

  • Hindmarsh, J. T. and McCurdy, R. F.: 1986, ‘Clinical and environmental aspects of arsenic toxicity’, Crit. Rev. Clin. Lab. Sci. 23(4) 315–347.

    PubMed  Google Scholar 

  • Howard, A. G., Apte, S. C., Comber, S. D. W. and Morris, R. J.: 1988, ‘Biogeochemical control of the summer distribution and speciation of arsenic in the Tamar estuary’, Estuar. Coast. Shelf Sci. 27, 427–443.

    Article  Google Scholar 

  • Howard, A. G. and Comber, S. D. W.: 1992, ‘Hydride trapping techniques for the speciation of arsenic’, Mikrochim. Acta 109, 27–33.

    Article  Google Scholar 

  • Howard, A. G., Hunt, L. E. and Salou, C.: 1999, ‘Evidence supporting the presence of dissolved dimethylarsinate in the marine environment’, Appl. Organometal. Chem. 13, 39–46.

    Article  Google Scholar 

  • Huang, J.-H. and Ilgen, G.: 2004, ‘Blank values, adsorption, pre-concentration, and sample preservation for arsenic speciation of environmental water samples’, Anal. Chim. Acta 512, 1–10.

    Article  Google Scholar 

  • Huang, Y. M. and Whang, C. W.: 1998, ‘Capillary electrophoresis of arsenic compounds with indirect fluorescence detection’, Electrophoresis 19(12), 2140–2144.

    Article  PubMed  Google Scholar 

  • Inoue, Y., Kawabata, K., Takahashi, H. and Endo, G.: 1994, ‘Determination of arsenic compounds using inductively coupled plasma mass spectrometry with ion chromatography’, J. Chromatogr. 675A, 149–154.

    Article  Google Scholar 

  • Irgolic, K. J.: 1992, ‘Arsenic’, in : M. Stoeppler (ed), Hazardous Metals in the Environment, Elsevier, Amsterdam, pp. 288–350.

    Google Scholar 

  • Irgolic, K. J., Greschonig, H. and Howard, A. G.: 1995, ‘Arsenic’ in: A. Townshend (ed), The Encyclopedia of Analytical Science, Academic Press, pp. 168–184.

  • Jain, C. K. and Ali, I.: 2000, ‘Arsenic: Occurrence, toxicity and speciation techniques’, Water Res. 34(17), 4304–4312.

    Article  Google Scholar 

  • Jay, J. A., Blute, N. K., Hemond, H. F. and Durant, J. L.: 2004, ‘Arsenic-sulfides confound anion exchange resin speciation of aqueous arsenic’, Water Res. 38, 1155–1158.

    Article  PubMed  Google Scholar 

  • Jokai, Z., Hegoczki, J. and Fodor, P.: 1998, ‘Stability and optimization of extraction of four arsenic species’, Microchem. J. 59(1), 117–124.

    Article  Google Scholar 

  • Jurica, L., Manova, A., Dzurov, J., Beinrohr, E. and Broekaert, J. A. C.: 2000, ‘Calibrationless flow-through stripping coulometric determination of arsenic(III) and total arsenic in contaminated water samples after microwave assisted reduction of arsenic(V)’, Fresenius J. Anal. Chem. 366(3), 260–266.

    Article  PubMed  Google Scholar 

  • Kabata-Pendias, A. and Szteke, B.: 1998, ‘Quality Problems in Trace Analysis in Environmental Studies’, Wydawnictwa Edukacyjne, Warsaw, Poland.

    Google Scholar 

  • Klaue, B. and Blum, J. D.: 1999, ‘Trace analyses of arsenic in drinking water by inductively coupled plasma mass spectrometry: High versus hydride generation’, Anal. Chem. 71(7) 1408-1414.

    Article  PubMed  Google Scholar 

  • Kim, M. J.: 2001, ‘Separation of inorganic arsenic species in groundwater using ion exchange method’, Bull. Environ. Contam. Toxicol. 67(1), 46–51.

    PubMed  Google Scholar 

  • Kim, M. J., Nriagu, J. and Haack, S.: 2002, ‘Arsenic species and chemistry in groundwater of southeast Michigan’, Environ. Pollut. 120, 379–390.

    Article  PubMed  Google Scholar 

  • Kuhn, A. and Sigg, L.: 1993, ‘Arsenic cycling in eutrophic Lake Greifen, Switzerland – Infuence of seasonal redox processes’, Limnol. Oceanogr. 38, 1052–1059.

    Google Scholar 

  • Lamble, K. J., Sperling, M. and Welz, B.: 1996, ‘Arsenic speciation in biological samples by on-line high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry’, Anal. Chim. Acta 334(3), 261–270.

    Article  Google Scholar 

  • Larsen, E. H.: 1998, ‘Method optimization and quality assurance in speciation analysis using high performance liquid chromatography with detection by inductively coupled plasma mass spectrometry’, Spectrochim. Acta. Part B: Atom. Spectro. 53(2), 253.

    Article  Google Scholar 

  • Le, X. C., Cullen, W. R. and Reimer, K. J.: 1994, ‘Speciation of arsenic compounds by HPLC with hydride generation atomic absorption spectrometry and induced coupled plasma mass spectrometry detection’, Talanta 41, 495–502.

    Article  Google Scholar 

  • Le, X. C., Li, X. F., Lai, V., Ma, M., Yalcin, S. and Feldmann, J.: 1998, ‘Simultaneous speciation of selenium and arsenic using elevated temperature liquid chromatography separation with inductively coupled plasma mass spectrometry detection’, Spectrochim. Acta B 53(6–8), 899-909.

    Article  Google Scholar 

  • Le, X. C. and Ma, M.: 1998, ‘Short-column liquid chromatography with hydride generation atomic fluorescence detection for the speciation of arsenic’, Anal. Chem. 70(9), 1926–1933.

    Article  PubMed  Google Scholar 

  • Le, X. C., Yalcin, S. and Ma, M.: 2000, ‘Speciation of submicrogram per liter levels of arsenic in water on-site species separation integrated with sample collection’, Environ. Sci. Technol. 34, 2342–2347.

    Article  Google Scholar 

  • Li, Z. L., Mou, S., Ni, Z. and Riviello, J. M.: 1995, ‘Sequential determination of arsenic and arsenate by ion chromatography’, Anal. Chim. Acta 307, 79–87.

    Article  Google Scholar 

  • Lindemann, T., Prange, A., Dannecker, W. and Neidhart. B.: 2000, ‘Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS’, Fresenius J. Anal. Chem. 368(2–3), 214–220.

    Article  PubMed  Google Scholar 

  • Lobiniski, R. and Adams, F.: 1993, ‘Recent advances in speciation analysis by capillary gas chromatography microwave induced plasma atomic emission spectrometry’, Trends Anal. Chem. 12, 41–49.

    Article  Google Scholar 

  • Lopez, M. A., Gomez, M. M., Placio, M. A. and Camara, C.: 1993, ‘Determination of six arsenic species by high performance liquid chromatography-hydride generation atomic absorption spectrometry with on-line thermoxidation’, Fresenius J. Anal. Chem. 346, 643–647.

    Article  Google Scholar 

  • Maity, S., Chakravarty, S., Thakur, P., Gupta, K. K., Bhattacharjee, S. and Roy, B. C.: 2004, ‘Evaluation and standardisation of a simple HG-AAS method for rapid speciation of As(III) and As(V) in some contaminated groundwater samples of West Bengal, India’, Chemosphere 54, 1199–1206.

    Article  PubMed  Google Scholar 

  • Mandal, B. K., Kazno, T. and Suzuki K. T.: 2002, ‘Arsenic round the world: A review’, Talanta 58, 201–235.

    Article  Google Scholar 

  • Mandal, B. K., Ogra, Y. and Suzuki, K. T.: 2001, ‘Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India’, Chem. Res. Toxicol. 14, 371–375.

    Article  PubMed  Google Scholar 

  • Martinez-Bravo, Y., Roig-Navarro, A. F., Lopez, F. J. and Hernandez, F.: 2001, ‘Multielemental determination of arsenic, selenium and chromium(IV) species in water by high-performance liquid chromatography inductively coupled plasma mass spectrometry’, J. Chromatogr. A 926(2), 265–724.

    Article  PubMed  Google Scholar 

  • Martin, I., Lopez-Gonzalvez, M. A., Gomez, M., Camara, C. and Palacios, M. A.: 1995, ‘Evaluation of high-performance liquid chromatography for the separation and determination of arsenic species by on-line high-performance liquid chromatographic-hydride generation-atomic absorption spectrometry’, J. Chromatogr. B: Biomed. Appl. 666(1), 101–109.

    Article  Google Scholar 

  • McCleskey, R. B., Nordstrom, D. K. and Maest, A. S.: 2004, ‘Preservation of water samples for arsenic(III/V) determinations: An evaluation of literature and new analytical results’, Appl. Geochem. 19, 995–1009.

    Article  Google Scholar 

  • McSheehy, S., Pohl, R., Lobinski, R. and Szpunar, J.: 2001, ‘Complementarity of multidimensional HPLC-ICP-MS and electrospray MS-MS for speciation analysis of arsenic in algae’, Anal. Chim. Acta 440, 3–15.

    Article  Google Scholar 

  • McSheehy, S., Pohl, P., Lobinski, R. and Szpunar, J.: 2001, ‘Investigation of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS)’, Analyst 126(7), 1055–1062.

    Article  PubMed  Google Scholar 

  • Mester, Z., Woller, A. and Fodor, P.: 1996, ‘Determination of arsenic species by high-performance liquid chromatography-hydride generation-(ultrasonic nebulizer)-atomic fluorescence spectrometry’, Microchem. J. 54(3), 184–194.

    Article  Google Scholar 

  • Michalke, B. and Schramel, P.: 1998, ‘Capillary electrophoresis interfaced to inductively coupled plasma mass spectrometry for element selective detection in arsenic speciation’, Electrophoresis 19(12), 2220–2225.

    Article  PubMed  Google Scholar 

  • Miller, G. P., Norman, D. L. and Frisch, P. L.: 2000, ‘A coment on arsenic species sepatation using ion exchange’, Water Res. 34(4), 1397–1400.

    Article  Google Scholar 

  • Milstein, L. S., Essader, A., Pellizzari, E. D., Fernando, R. A. and Kiubo, O.A.: 2002, ‘Selection of a suitable mobile phase for the speciation of four arsenic compounds in drinking water samples using ion-exchange chromatography coupled to inductively coupled plasma mass spectrometry’, Environ. Int. 28, 277–283.

    Article  PubMed  Google Scholar 

  • Moldovan, M., Gomez, M. M., Palacios, M. A. and Camara, C.: 1998, ‘Arsenic speciation in water and human urine by HPLC-ICP-MS and HPLC-MO-HG-AAS’, Microchem. J. 59(1), 89–99.

    Article  Google Scholar 

  • Montes-Bayon, M., DeNicola, K. and Caruso, J. A.: 2003, ‘Liquid chromatography-inductively coupled plasma mass spectrometry’, J. Chromatogr. A 1000, 457–476.

    Article  PubMed  Google Scholar 

  • Morita, M. and Edmonds, J. S.: 1992, ‘Determination of arsenic in environmental and biological samples’, Pure Appl. Chem. 64, 575–590.

    Google Scholar 

  • Munoz, O., Velez, D. and Montoro, R.: 1999, ‘Optimization of the solubilization, extraction and determination of inorganic arsenic [As(III) + As(V)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry’, Analyst 124(4), 601–607.

    Article  PubMed  Google Scholar 

  • Nakazato, T., Tao, H., Taniguchi, T. and Isshiki, K.: 2002, ‘Determination of arsenite, arsenate and monomethylarsonic acid in seawater by ion-exclusion chromatography combined with inductively coupled plasma mass spectometry using reaction cell and hydride generation technique’, Talanta 58(1), 121–132.

    Article  Google Scholar 

  • National Research Council Arsenic in Drinking Water: 1999, National Academy Press, Washington, DC.

  • Neff, J. M.: 1997, ‘Ecotoxicology of arsenic in the marine environment’, Environ. Toxicol. Chem. 16, 917–927.

    Article  Google Scholar 

  • Niedzielski, P.: 2002, ‘Analiza specjacyjna arsenu antymonu i selenu technika generowania wodorków’, Analityka 4, 4–7.

    Google Scholar 

  • Niedzielski, P.: 2002, ‘Arsen, antymon i selen jako mikroskładniki wód’, LAB 5, 34–38.

    Google Scholar 

  • Niedzielski, P.: 2003, ‘Źródła błçdów w technice generowania wodorków’, LAB 1, 18.

    Google Scholar 

  • Palacios, M. A., Gomez, M., Camara, C. and Lopez, M. A.: 1997, ‘Stability studies of arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine and arsenocholine in deionized water, urine and clean-up dry residue from urine samples and determination by liquid chromatography with microwave-assisted oxidation-hydride generation atomic absorption spectrometric detection’, Anal. Chim. Acta 340(1–3), 209–220.

    Article  Google Scholar 

  • Pedersen, S. N. and Francesconi, K. A.: 2000, ‘Liquid chromatography electrospray mass spectrometry with variable fragmentor voltages gives simultaneous elemental and molecular detection of arsenic compounds’, Rapid Commun. Mass Spectrom. 14(8), 641–645.

    Article  PubMed  Google Scholar 

  • Peterson, M. L. and Carpenter, R.: 1983, ‘Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic Fjord’, Mar. Chem. 12, 295–321.

    Article  Google Scholar 

  • Pettine, M., Camusso, M. and Martinotti, W.: 1992, ‘Dissolved and particulate transport of arsenic and chromium in the Po River, Italy’, Sci. Total Environ. 119, 253–280.

    Article  Google Scholar 

  • Pohl, P.: 2004, ‘Hydride generation – Recent advances in atomic emission spectrometry’, Trends Anal. Chem. 23(2), 87–101.

    Article  Google Scholar 

  • Pohl, P. and Prusisz, B.: 2004, ‘Ion-exchange column chromatography – An attempt to speciate arsenic’, Trends Anal. Chem. 23(1), 63–69.

    Article  Google Scholar 

  • Pohl, P. and Szpunar, J.: 2001, ‘Techniki sprzçżone w analizie specjacyjnej’, LAB 4, 13–15.

    Google Scholar 

  • Prange, A., Pepelnik, R. and Leonhard, P.: 2001, Proceedings of the Agilent 7500c ICP-MS Seminar, Yokogawa Analytical Systems Inc., Japan, p. 1.

  • Prest, J. E., Baldock, S. J., Fielden, P. R., Goddard, N. J. and Treves Brown, B. J.: 2003, ‘Miniaturised isotachophoretic analysis of inorganic arsenic speciation using a planar polymer chip with integrated conductivity detection’, J. Chromatogr. A 990, 325–334.

    Article  PubMed  Google Scholar 

  • Raessler, M., Michalke, B., Schramel, P., Schulte-Hostede, S. and Kettrup, A.: 1998, ‘The capability of ultrafiltration of arsenic and selenium species in ground water samples with high concentrations of iron, manganese and sulfur’, Fresenius J. Anal. Chem. 362, 281–284.

    Article  Google Scholar 

  • Raessler, M., Michalke, B., Schulte-Hostede, S. and Kettrup, A.: 2000, ‘Long-term monitoring of arsenic and selenium species in contaminated groundwater by HPLC and HG-AAS’, Sci. Total Environ. 258(3), 171–181.

    Article  PubMed  Google Scholar 

  • Raposo, J. C., Sanz, J., Zuloaga, O., Olazabal, A. and Madariaga, J. M.: 2004, ‘Validation of the thermodynamic model of inorganic arsenic in non polluted river waters of the Basque country (Spain)’, Talanta 63, 683–690.

    Article  Google Scholar 

  • Rauret, G., Rubio, R. and Padro, A.: 1991, ‘Arsenic speciation using HPLC hydride generation ICP AES with gas liquid separator’, Fresenius J. Anal. Chem. 340, 157–160.

    Article  Google Scholar 

  • Riedel, G. F.: 1993, ‘The annual cycle of arsenic in a temperate estuary’, Estuaries 16, 533–540.

    Google Scholar 

  • Roig-Navarro, A. F., Martinez-Bravo, Y., Lopez, F. J. and Hernandez, F.: 2001, ‘Simultaneous determination of arsenic species and chromium(V) by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry’, J. Chromatogr. A 912(2), 319–327.

    Article  PubMed  Google Scholar 

  • Rosen, A. L. and Hieftje, G. M.: 2004, ‘Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis: Applications and instrumentation’, Spectrochim. Acta. Part B 59, 135–146.

    Article  Google Scholar 

  • Rozporzãdzenie Ministra Zdrowia z dnia 19 listopada.: 2002r. w sprawie wymagan dotyczãcych jakości wody przeznaczonej do spożycia przez ludzi.

  • Rupasinghe, T., Cardwell, T. J., Cattrall, R. W., Potter, I. and Kolev, S. D.: 2004, ‘Determination of arsenic by pervaporation-flow injection hydride generation and permanganate spectrophotometric detection’, Anal. Chim. Acta 510, 225–230.

    Article  Google Scholar 

  • Russeva, E.: 1995, ‘Speciation analysis, specularities and requirements’, Anal. Lab. 4(3), 143–148.

    Google Scholar 

  • Saeki, K., Sakakibara, H., Sakai, H., Kunito, T. and Tanabe, S.: 2000, ‘Arsenic accumulation in three species of sea turtles’, Biometals 13(3), 241–250.

    Article  PubMed  Google Scholar 

  • Scott, D. L., Ramanathan, S., Shi, W., Rosen, B. P. and Daunert, S.: 1997, ‘Genetically engineered bacteria: Electrochemical sensing systems for antimonite and arsenite’, Anal. Chem. 69(1), 16–20.

    Article  PubMed  Google Scholar 

  • Segal, A., Gorecki, T., Mussche, P., Lips, J. and Pawliszyn, J.: 2000, ‘Development of membrane extraction with a sorbent interface-micro gas chromatography system for field analysis’, J. Chromatogr. A 873(1), 13–27.

    Article  PubMed  Google Scholar 

  • Seyler, P. and Martin, J. M.: 1990, ‘Distribution of arsenite and total dissolved arsenic in major French estuaries: Dependence on biogeochemical processes and anthropogenic inputs’, Mar. Chem. 29, 277–294.

    Article  Google Scholar 

  • Sheppared, B. S., Caruso, J. A., Heitkemper, D. T. and Wolnik, K. A.: 1992, ‘Arsenic speciation by ion chromatography with induced coupled plasma mass spectrometry detection’, Analyst 117, 971–975.

    Article  PubMed  Google Scholar 

  • Shraim, A., Chiswell, B. and Olszowy, H.: 2000, ‘Use of perchloric acid as a reaction medium for speciation of arsenic by hydride generation-atomic absorption spectrometry’, Analyst 125(5), 949–953.

    Article  PubMed  Google Scholar 

  • Shum, S., Nedderson, R. and Houk, R.S.: 1992, ‘Elemental speciation by liquid chromatography induced coupled plasma spectrometry with direct injection nebulization’, Analyst 117, 577-582.

    Article  PubMed  Google Scholar 

  • Sima, J., Rychlovsky, P. and Dedina, J.: 2004, ‘The efficiency of the electrochemical generation of volatile hydrides studied by radiometry and atomic absorption spectrometry’, Spectrochim. Acta. Part B 59, 125–133.

    Article  Google Scholar 

  • Simon, S., Tran, H., Pannier, F. and Potin-Gautier, M.: 2004, ‘Simultaneous determination of twelve inorganic and organic arsenic compounds by liquid chromatography-ultraviolet irradiation-hydride generation atomic fluorescence spectrometry’, J. Chromatogr. A 1024, 105–113.

    Article  PubMed  Google Scholar 

  • Slejkovec, Z., van Elteren, J. and Byrne, A. R.: 1998, ‘A dual arsenic speciation system combining liquid chromatographic and purge and trap-gas chromatographic separation with atomic fluorescence spectrometric detection’, Anal. Chim. Acta 358(1), 51–60.

    Article  Google Scholar 

  • Slejkovec, Z., van Elteren, J. and Woroniecka. U. D.: 2001, ‘Underestimation of the total arsenic concentration by hydride generation techniques as a consequence of the incomplete mineralization of arsenobetaine in acid digestion procedures’, Anal. Chim. Acta 443, 277–282.

    Article  Google Scholar 

  • Smedley, P. L., Edmunds, W. M., Peling-Ba, K. B., Appleton, J. D., Fuge, R. and McCall, G. J. H. (eds): 1996, ‘Mobility of Arsenic in Groundwater in the Obuasi Area of Ghana’, in: Environmental Geochemistry and Health, Vol. 113, Geological Society Special Publication, London, pp. 163–181.

    Google Scholar 

  • Smedley, P. L. and Kinniburgh, D. G.: 2002, ‘A review of the source, behaviour and distribution of arsenic in natural waters’, Appl. Geochem. 17, 517–568.

    Article  Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., Huq, I., Luo, Z. and Nicolli, H. B.: 2001, ‘International Perspective on Naturally Occurring Arsenic Problems in Groundwater’, in: W. R. Chappell, C. O. Abernathy and R. L. Calderon (eds), Arsenic Exposure and Health Effects, vol. IV, Elsevier, Amsterdam, pp. 9–25.

    Google Scholar 

  • Smedley, P. L., Zhang, M., Zhang, G. and Luo, Z.: 2001, ‘Arsenic and Other Redox-sensitive Elements in Groundwater from the Huhhot Basin, Inner Mongolia’, in: R. Cidu (ed), Water–Rock Interaction, Vol. 1, Swets & Zeitlinger, Lisse, pp. 581–584.

    Google Scholar 

  • Sun, B., Macka, M. and Haddad, P. R.: 2004, ‘Speciation of arsenic and selenium by capillary electrophoresis’, J. Chromatogr. A 1039, 201–208.

    Article  PubMed  Google Scholar 

  • Taniguchi, T., Tao, H., Tominaga, M. and Miyazaki, A.: 1999, ‘Sensitive determination of three arsenic species in water by ion exclusion chromatography-hydride generation-inductively coupled plasma mass spectrometry’, J. Anal. Atom. Spectrom. 14, 651–655.

    Article  Google Scholar 

  • Timerbaev, A. R.: 2000, ‘Elemental speciation analysis by capillary electrophoresis’, Talanta 52(4), 573–606.

    Article  Google Scholar 

  • Timerbaev, A. R.: 2001, ‘Elemental speciation analysis by capillary electrophoresis: What are the hints on becoming a standard analytical methodology?’, Anal. Chim. Acta 433(2), 165–180.

    Article  Google Scholar 

  • Tomlinson, M. J., Lin, L. and Caruso, J. A.: 1995, ‘Plasma mass spectrometry as a detector for chemical speciation studies’, Analyst 120(3), 583–589.

    Article  PubMed  Google Scholar 

  • Tsalev, D. L., Sperling, M. and Welz, B.: 2000, ‘Flow-injection hydride generation atomic absorption spectrometric study of the automated on-line pre-reduction of arsenate, methylarsonate and dimethylarsinate and high-performance liquid chromatographic separation of their L-cysteine complexes’, Talanta 51(6), 1059–1068.

    Article  Google Scholar 

  • United Nations Syntesis Report on Arsenic in Drinking Water: 2001.

  • Van Elteren, J. T. Stibilj, V. and Slejkovec, Z.: 2002, ‘Speciation of inorganic arsenic in some bottled Slovene mineral waters using HPLC-HGAFS and selective coprecipitation combined with FI-HGAFS’ Water Res. 36(12), 2967–2974.

    Article  PubMed  Google Scholar 

  • Van Holderbeke, M., Zhao, Y., Vanhaecke, F., Moens. L., Dams, R. and Sandra, P.: 1999, ‘Speciation of six arsenic compounds using capillary electrophoresis inductively coupled plasma mass spectrometry’, J. Anal. Atom. Spectrom. 14, 229–234.

    Article  Google Scholar 

  • Velitchkova, N., Pentcheva, E. N. and Daskalowa, N.: 2004, ‘Determination of arsenic, mercury, selenium, thallium, tin and bismuth in environmental materials by inductively coupled plasma emission spectrometry’, Spectrochim. Acta. Part B 59, 871–882.

    Article  Google Scholar 

  • Vilano, M., Padro, A. and Rubio, R.: 2000, ‘Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation’, Anal. Chim. Acta 411, 71–139.

    Article  Google Scholar 

  • Weber, G.: 1993, ‘Investigation of the stability of metal species with respect to liquid chromatographic separations’, Fresenius J. Anal. Chem. 346, 639–642.

    Article  Google Scholar 

  • Weeger, W., Lievremont, D., Perret, M., Lagarde, F., Hubert, J. C., Leroy, M. and Lett, M. C.: 1999, ‘Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment’, Biometals 12(2), 141–149.

    Article  PubMed  Google Scholar 

  • WHO Arsenic Compounds: 2001, Environmental Criteria, Vol. 224, 2nd ed., World Health Organisation, Geneva.

  • Welch, A. H., Westjohn, D. B., Helsel, D. R. and Wanty, R. B.: 2000, ‘Arsenic in ground water of the United States: Occurance and geochemistry’, Ground Water 38, 589–604.

    Article  Google Scholar 

  • Yan, X. P., Kerrich, R. and Hendry, M. J.: 2000, ‘Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada’, Geochim. Cosmochim. Acta 64, 2637–2648.

    Article  Google Scholar 

  • Yan, X. P., Yin, X. B., He, X. W. and Jiang, Y.: 2002, ‘Flow injection on-line sorption preconcentration coupled with hydride generation atomic fluorescence spectrometry for determination of (ultra)trace amounds of arsenic(III) and arsenic(V) in natural water samples’, Anal. Chem. 74(9), 2162–2166.

    Article  PubMed  Google Scholar 

  • Zhang, Q., Minami, H., Inoue, S. and Atsuya, I.: 2001, ‘Preconcentration by coprecipitation of arsenic and tin in natural waters with a Ni-pyrrolidine dithiocarbamate complex and their direct determination by solid-sampling atomic-absorption spectrometry’, Fresenius J. Anal. Chem. 370(7), 860–864.

    Article  PubMed  Google Scholar 

  • Zhang, Q., Minami, H., Inoue, S. and Atsuya, I.: 2004, ‘Differential determination of trace amounts of arsenic(III) and arsenic(V) in seawater by solid sampling atomic absorption spectrometry after preconcentration by coprecipitation with a nickel-pyrrolidine dithiocarbamate complex’, Anal. Chim. Acta 508, 99–105.

    Article  Google Scholar 

  • Zhang, P., Xu, G., Xiong, J., Zheng, Y., Yang, O. and Wei, F.: 2001, ‘Determination of arsenic species by capillary zone electrophoresis with large-volume field-amplified stacking injection’, Electrophoresis 22(16), 3567–3572.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Terlecka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terlecka, E. Arsenic Speciation Analysis in Water Samples: A Review of The Hyphenated Techniques. Environ Monit Assess 107, 259–284 (2005). https://doi.org/10.1007/s10661-005-3109-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-3109-z

Keyword

Navigation