Skip to main content
Log in

Effect of the Carbohydrate Composition of feed Concentratates on Methane Emission from dairy Cows and Their Slurry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dietary carbohydrate effects on methane emission from cows and their slurry were measured on an individual animal basis. Twelve dairy cows were fed three of six diets each (n = 6 per diet) of a forage-to-concentrate ratio of 1:1 (dry matter basis), and designed to cover the cows’ requirements. The forages consisted of maize and grass silage, and hay. Variations were exclusively accomplished in the concentrates which were either rich in lignified or non-lignified fiber, pectin, fructan, sugar or starch. To measure methane emission, cows were placed into open-circuit respiration chambers and slurry was stored for 14 weeks in 60-L barrels with slurry being intermittently connected to this system. The enteric and slurry organic matter digestibility and degradation was highest when offering Jerusalem artichoke tubers rich in fructan, while acid-detergent fiber digestibility and degradation were highest in cows and slurries with the soybean hulls diet rich in non-lignified fiber. Multiple regression analysis, based on nutrients either offered or digested, suggested that, when carbohydrate variation is done in concentrate, sugar enhances enteric methanogenesis. The methane emission from the slurry accounted for 16.0 to 21.9% of total system methane emission. Despite a high individual variation, the methane emission from the slurry showed a trend toward lower values, when the dietwas characterized by lignified fiber, a diet where enteric methane release also had been lowest. The study disproved the assumption that a lower enteric methanogenesis, associated with a higher excretion of fiber, will inevitably lead to compensatory increases in methane emission during slurry storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amberger, A., Vilsmeier, K. and Guster, R.: 1982, ‘Stickstofffraktionen verschiedener Güllen und deren Wirkung im Pflanzenversuch’, Z. Pflanzenernähr. Bodenk. 145, 325–336.

    Google Scholar 

  • AOAC (Association of Analytical Chemists): 1990, ‘Official Methods of Analysis’, 15th Edn., AOAC, Arlington, VA, U.S.A.

    Google Scholar 

  • Bach Knudsen, K. E., Aaman, P. and Eggum, B. O.: 1987, ‘Nutritive value of Danish-grown barley varities, I. Carbohydrates and other major constituents’, J. Cereal Sci. 6, 173–186.

    Google Scholar 

  • Bach Knudsen, K. E.: 1997, ‘Carbohydrate and lignin contents of plant materials used in animal feeding’, Animal Feed Sci. Technol. 67, 319–338.

    Article  Google Scholar 

  • Bannink, A., Kogut, J., Dijkstra, J., France, J., Tamminga, S. and van Vuuren, A. M.: 2000, ‘Modelling Production and Portal Appearance of Volatile Fatty Acids in Dairy Cows’, in J. P. McNamara, J. France and D. E. Beever (eds.), Modelling Nutrient Utilization in Farm Animals, CAB International, Wallingford, UK, pp. 87–102.

    Google Scholar 

  • Beever, D. E.: 1993, ‘Rumen Function’, in J. M. Forbes and J. France (eds.), Quantitative Aspects of Ruminant Digestion and Metabolism, CAB International, Wallingford, U.K., pp. 187–215.

    Google Scholar 

  • Benchaar, C., Rivest, J., Pomar, C. and Chiquette, J.: 1998, ‘Prediction of methane production from dairy cows using existing mechanistic models and regression equations’, J. Animal Sci. 76, 617–627.

    Google Scholar 

  • Bundeskanzlei: 2003, ‘Tierschutzverordnung (SR 455.1)’, EDMZ, Berne, Switzerland.

    Google Scholar 

  • Clemens, J., Trimborn, M., Amon, B., Kryvoruchko, V. and Weiland, P.: 2004, ‘Greenhouse Gas Mitigation by Anaerobic Digestion’, in A. Weiske (ed.), Proceedings of the International Conference on Greenhouse Gas Emissions from Agriculture, Mitigation Options and Strategies’, February 10–12, 2004, Leipzig, Germany, pp. 96–100.

  • Demeyer, D. I. and Van Cleemput, O.: 1996, ‘Methane emissions through animals and from the ground. Special Issue’, Environ. Monit. Assess. 42, 1–210.

    Article  Google Scholar 

  • Ellgaard, L.: 2001, ‘Large Scale Manure Based Biogas Plants in Denmark. Configuration and Operational Experience’, in J. Takahashi and B.A. Young (eds.), Greenhouse Gases and Animal Agriculture, Elsevier Science B.V., Amsterdam, The Netherlands, pp. 231–241.

    Google Scholar 

  • Englyst, H. N., Wiggins, H. S. and Cummings, J. H.: 1982, ‘Determination of non-starch polysaccharides in plant food by gas-liquid chromatography of constituent sugars as alditol acetates’, Analyst 119, 1497–1509.

    Article  Google Scholar 

  • Giger-Reverdin, S. and Sauvant, D.: 2000, ‘Methane Production in Sheep in Relation to Concentrate Feed Composition from Bibliographic Data’, in I. Ledin. and P. Morand-Fehr (eds). 8th Seminar of the Sub-Network on Nutrition of the FAO-CIHEAM Inter-Regional Cooperative Research and Development Network on Sheep and Goats. INRA. Cahiers-Options-Mediterraneennes, Grignon, France, pp. 43–46.

    Google Scholar 

  • Hindrichsen, I. K., Wettstein, H.-R., Machmüller, A., Soliva, C.R., Bach Knudsen, K. E., Madsen, J. and Kreuzer, M.: 2004a, ‘Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro’, Can. J. Animal Sci. 84, 265–276.

    Google Scholar 

  • Hindrichsen, I. K., Mills, J. A. N., Madsin, J., Kreuzer, M. and Dijkstra, J.: 2004b, ‘Results of a mechanistic model estimating methane in relation to methane emissions measured in dairy cows’, J. Animal Feed Sci. 13(Supp. 1), 99–102.

    Google Scholar 

  • IPCC: 1996, Revised IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, Bracknell, U.K.

  • Johnson, D. E., Hill, T. M., Ward, G. M., Johnson, K. A., Branine, M. E., Carmean, B. R. and Lodman, D. W.: 1993, ‘Ruminants and Other Animals’, in M.A.K. Khalil (ed.) Atmospheric Methane Sources, Sinks, and Role in Global Change, Springer-Verlag, Berlin, Germany, pp. 199–229.

    Google Scholar 

  • Johnson, K. A. and Johnson, D. E.: 1995, ‘Methane emission from cattle’, J. Animal Sci. 73, 2483–2492.

    Google Scholar 

  • Johnson, D. E. and Ward, G. M.: 1996, ‘Estimates of animal methane emissions’, Environ. Monit. Assess. 42, 133–141.

    Article  Google Scholar 

  • Johnson, E. D., Ward, G. M. and Bernal, G.: 1997, ‘Biotechnology Mitigating the Environmental Effects of Dairying: Greenhouse Gas Emissions’, in R. A. S. Welch, D. J. W. Burns, S. R. Davis, A. I. Popay, C. G. Prosser (eds.), Milk Composition, Production and Biotechnology, CAB International, Wallingford, U.K., pp. 497–511.

    Google Scholar 

  • Jung, H. G., Mertens, D. R. and Payne, A. J.: 1997, ‘Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber’, J. Dairy Sci. 80, 1622–1628.

    PubMed  Google Scholar 

  • Khalili, H. and Huhtanen, P.: 1991, ‘Sucrose supplements in cattle given grass silage-based diet. Digestion of cell wall carbohydrates’, Animal Feed Sci. Technol. 33, 263–273.

    Article  Google Scholar 

  • Külling, D. R., Menzi, H., Kröber, T. F., Neftel, A., Sutter, F., Lischer, P. and Kreuzer, M.: 2001, ‘Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content’, J. Agric. Sci. 137, 235–250.

    Google Scholar 

  • Külling, D. R., Dohme, F., Menzi, H., Sutter, F., Lischer, P. and Kreuzer, M.: 2002, ‘Methane emissions of differently fed dairy cows and corresponding methane and nitrogen emissions from their manure during storage’, Environ. Monit. Assess. 79, 129–150.

    Article  PubMed  Google Scholar 

  • Külling, D. R., Menzi, H., Sutter, F., Lischer, P. and Kreuzer, M.: 2003, Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations’, Nutr. Cycl. Agroecosyst. 65, 13–22.

    Article  Google Scholar 

  • Larsson, K. and Bengtsson, S.: 1983, ‘Metodebeskrivning Nr. 22’, {Statens Lantbrukskemiske Laboratorium,} Uppsala, Sweden.

    Google Scholar 

  • Mathison, G. W., Okine, E. K., McAllister, T. A., Dong, Y., Galbraith, J. and Dmytruk, O. I. N.: 1998, ‘Reducing methane emissions from ruminant animals’, J. Appl. Animal Res. 14, 1–28.

    Google Scholar 

  • Møller, H. B., Sommer, S. G. and Ahring, B. K.: 2004, ‘Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure’, J. Environ. Qual. 33, 27–36.

    PubMed  Google Scholar 

  • Moloney, A. P., Almiladi, A. A., Drennan, M. J. and Caffrey, P. J.: 1994, ‘Rumen and blood variables in steers fed grass silage and rolled barley or sugar cane molasses-based supplements’, Animal Feed Sci. Technol. 50, 37–54.

    Article  Google Scholar 

  • Monteny, G. J. and Bannink, A.: 2004, ‘Main Principles for GHG Abatement Strategies for Animal Houses, Manure Storage and Manure Management’, in A. Weiske (ed.), ‘Proceedings of the International Conference on Greenhouse Gas Emissions from Agriculture. Mitigation Options and Strategies’, February 10–12, 2004, Leipzig, Germany, pp. 38–44.

  • Moss, A. R., Jouany, J.-P. and Newbold, J.: 2000, ‘Methane prediction by ruminants: Its contribution to global warming’, Ann. Zootechnol. 49, 231–253.

    Article  Google Scholar 

  • RAP (Federal Research Station for Animal Production): 1999, ‘Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer’, (4th rev. edn.), Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland, 327 pp.

    Google Scholar 

  • Russell, J. B.: 1998, ‘The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro’, J. Dairy Sci. 81, 3222–3230.

    PubMed  Google Scholar 

  • Safely, L. M.: 1989, ‘Methane Productions from Animal Wastes Management Systems’, Methane Emissions from Ruminants, ICF/USEPA Workshop, Palm Springs, U.S.A.

    Google Scholar 

  • Safely, L. M. and Westermann, P. W.: 1988, ‘Biogas production in anaerobic lagoons’, Biol. Wastes 23, 181–193.

    Article  Google Scholar 

  • Stensig, T., Weisbjerg, M. R. and Hvelplund, T.: 1998, ‘Digestion and passage kinetics of fiber in dairy cows as affected by the proportion of wheat starch or sucrose in the diet’, Acta Agric. Scand. A 48, 129–140.

    Google Scholar 

  • Sutter, F. and Beever, D. E.: 2000, ‘Energy and nitrogen metabolism in Holstein–Friesian cows during early lactation’, Animal Sci. 70, 503–514.

    Google Scholar 

  • Theander, O., {Å}man, P., Westerlund, E. and Graham, H.: 1994, ‘Enzymatic/chemical analysis of dietary fiber’, J. AOAC Int. 77, 703–709.

    PubMed  Google Scholar 

  • Torrent, J., Johnson, D. E. and Reverter, A.: 1994, ‘Prediction of methane production in cattle using rates of digestion and passage’, J. Animal Sci. 72(Suppl 1), 728.

    Google Scholar 

  • Valk, H.: 1994, ‘Effects of partial replacement of herbage by maize silage on N-utilisation and milk production of dairy cows’, Livestock Prod. Sci. 40, 241–250.

    Article  Google Scholar 

  • Van Soest, P. J., Robertson, J. B. and Lewis, B. A.: 1991, ‘Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition’, J. Dairy Sci. 74: 3583–3597.

    PubMed  Google Scholar 

  • Wilkerson, V. A., Casper, D. P. and Mertens, D. R.: 1995, ‘The prediction of methane production of Holstein cows by several equations’, J. Dairy Sci . 78, 2402–2414.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kreuzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hindrichsen, I.K., Wettstein, H.R., Machmüller, A. et al. Effect of the Carbohydrate Composition of feed Concentratates on Methane Emission from dairy Cows and Their Slurry. Environ Monit Assess 107, 329–350 (2005). https://doi.org/10.1007/s10661-005-3008-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-3008-3

Keyword

Navigation