Skip to main content

Advertisement

Log in

Developing a National Indicator of Soil Quality on U.S Forestlands: Methods and Initial Results

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Montreal Process was formed in 1994 to develop an internationally agreed upon set of criteria and indicators for the conservation and sustainable management of temperate and boreal forests. In response to this initiative, the Forest Inventory and Analysis (FIA) and Forest Health Monitoring (FHM) programs of the United States Department of Agriculture Forest Service have implemented soil measurements as part of a national monitoring program to address specific questions related to the conservation of soil and water resources. Integration of soil assessments into the national FIA program provides for systematic monitoring of soil properties across all forested regions of the U.S. using standardized collection, laboratory, and statistical procedures that are compatible with existing forest inventory data. The resulting information will provide quantitative benchmarks for regional, national, and international reporting on sustainable forest management and enhance our understanding of management effects on soil quality. This paper presents an overview of the FIA soil monitoring program, outlines the field and laboratory protocols as currently implemented, and provides examples of how these data may be used to assess indicators of sustainable management as defined by the Montreal Process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams, M. B., Turner, R. S. and Schmoyer, D. D.: 1992, ‘Evaluation of direct/delayed response project soil sampling classes: Northeastern United States’, Soil Sci. Soc. Am. J. 56 (1), 177-187.

    Google Scholar 

  • Amacher, M. C., Henderson, R. E., Breithaupt, M. D., Seale, C. L. and LaBauve, J. M.: 1990, ‘Unbuffered and buffered salt methods for exchangeable cations and effective cation-exchange capacity’, Soil Sci. Soc. Am. J. 54, 1036–1042.

    Google Scholar 

  • Amacher, M. C., O’Neill, K. P., Dresbach, R. and Palmer, C. J.: 2003, ‘Laboratory methods in the forest inventory and analysis (FIA) soil indicator program’, Technical Documentation, http://www.ncrs.fs.fed.us/4801/national-programs/indicators/soils/.

  • Amacher, M. C. and O’Neill, K. P.: 2004, Assessing Soil Compaction on Forest Inventory & Analysis Phase 3 Field Plots Using a Pocket Penetrometer, Research Note, RMRS-RP-46WWW, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado.

  • Amacher, M. C., O’Neill, K. P. and Conkling, B.L.: in press, Watershed Erosion Prediction Project (WEPP) Soil Erosion Rates for Forest Inventory & Analysis (FIA)/Forest Health Monitoring (FHM) Phase 3 Plots in Idaho, General Technical Report, RM-XXXX, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado.

  • Anon.: 1995, ‘Sustaining the world’s forests: The Santiago agreement’, J. Forestry 93, 18-21.

    Google Scholar 

  • Brais, S.: 2001, ‘Persistence of soil compaction and effects of seedling growth in northwestern Quebec’, Soil Sci. Soc. Am. J. 65, 1263–1271.

    Google Scholar 

  • Brand, G. J., Nelson, M. D., Wendt, D. G. and Nimerfro, K. K.: 2000, ‘The hexagon/panel system for selecting FIA plots under an annual inventory’, in: R. E. McRoberts, G. A. Reams and P. C. Van Deusen (eds), Proceedings of the First Annual Forest Inventory and Analysis Symposium, General Technical Report, NC-213, USDA Forest Service, North Central Research Station, St. Paul, MN, pp. 8–13.

  • Burger, J. A. and Kelting, D. L.: 1999, ‘Using soil quality indicators to assess forest stand management’, J. For. Ecol. Manage. 122, 155–166.

    Article  Google Scholar 

  • Cannell, R. Q.: 1977, ‘Soil aeration and compaction in relation to root growth and management’, App. Biol. 2, 1–86.

    Google Scholar 

  • Conkling, B. L., Coulston, J. W. and Ambros, M. J. (eds): in press, 2001 Forest Health Monitoring National Technical Report, General Technical Report, U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC.

  • Dale, V. H. and Beyler, S. C.: 2001, ‘Challenges in the development and use of ecological indicators’, Ecol. Indicators 1, 3–10.

    Article  Google Scholar 

  • Dissmeyer, G. E. and Foster, G. R.: 1981, ‘Estimating the cover management factor (C) in the universal soil loss equation for forest conditions’, J. Soil Water Conserv. 36 (4), 235–240.

    Google Scholar 

  • Dissmeyer, G. E. and Foster, G. R.: 1985, A Guide for Predicting Sheet and Rill Erosion on Forest Land, Technical Publication, R8-TP 6, U.S. Department of Agriculture, Forest Service, Atlanta, Georgia.

    Google Scholar 

  • Elliott, W. J., Hall, D. E. and Scheele, D. L.: 2000, Disturbed WEPP: WEPP Interface for Disturbed Forest and Range Runoff, Erosion, and Sediment Delivery, Technical Documentation, http://forest.moscowfsl.wsu.edu/fswepp/docs/distweppdoc.html.

  • Fisher, R. F. and Binkley, D.: 2000, Ecology and Management of Forest Soils, 3rd ed., John Wiley and Sons, New York, p. 489.

    Google Scholar 

  • Froelich, H. A. and McNabb, D. H.: 1984, ‘Minimizing soil compaction in Pacific Northwest forests’, in: E. L. Stone (ed), Forest Soils and Treatment Impacts, University Tennessee Press, Knoxville, Tennessee, pp. 159–192.

    Google Scholar 

  • Gomez, A., Powers, R. F., Singer, M. J. and Horwath, W. R.: 2002, ‘Soil compaction effects on growth of young ponderosa pine following litter removal in California’s Sierra Nevada’, Soil Sci Soc. Am. J. 66, 1334–1343.

    Google Scholar 

  • Graecen, E. L. and Sands, R.: 1980, ‘Compaction of forest soils: A review’, Aust. J. Soil Res. 18, 163–189.

    Article  Google Scholar 

  • Heath, L. S., Birdsey, R. A. and Williams, D. W.: 2002, ‘Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001’, Environ. Pollut. 116 (3), 373-380.

    Article  PubMed  Google Scholar 

  • Heninger, R., Scott, W., Dobowski, A., Miller, R., Anderson, H. and Duke, S.: 2002, ‘Soil disturbance and 10-year growth response of coast Douglas-fir on nontilled and tilled skid trails in the Oregon Cascades’, Can. J. For. Res. 32, 233–246.

    Article  Google Scholar 

  • Krogh, L., Noergaard, A., Hermansen, M., Humlekrog, G., Balstroem, T. and Bruening-Madsen, H.: 2003, ‘Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods’, Agric. Ecosyst. Environ. 96 (1–3), 19–28.

    Google Scholar 

  • Kuo, S.: 1996, ‘Phosphorus’, in: D. L. Sparks et al. (eds), Methods of Soil Analysis. Part 3. Chemical methods, Soil Science Society of America, Madison, Wisconsin, pp. 869–919.

    Google Scholar 

  • Kurtz, J. C., Jackson, L. E. and Fisher, W. S.: 2001, ‘Strategies for evaluating indicators based on guidelines from the Environmental Protection Agency’s Office of Research and Development’ Ecol. Indicators 1, 49–60.

    Article  Google Scholar 

  • Lee, J. J., Lammers, D. A., Stevens, D. L., Thornton, K. W. and Wheeler, K. A.: 1989, ‘Classifying soils for acidic deposition aquatic effects: A scheme for the Northeast USA’, Soil Sci. Soc. Am. J. 53 (4), 1153–1162.

    Google Scholar 

  • MacDonald, L. H.: 1994, ‘Developing a monitoring project’, J. Soil Water Conserv. 221–227.

  • McRoberts, R. E., McWilliams, W. H., Reams, G. A., Schmidt, T. L., Jenkins, J. C., O’Neill, K. P., Miles, P. D. and Brand, G. J.: 2004, ‘Assessing sustainability using data from the Forest Inventory and Analysis program of the United States Forest Service’, J. Sustainable For. 18 (1), 23-46.

    Article  Google Scholar 

  • Miles, P. D.: 2002, ‘Using biological criteria and indicators to address forest inventory data at the state level’, J. For. Ecol. Manage. 155, 171–185.

    Article  Google Scholar 

  • Nelson, D. W. and Sommers, L. E.: 1996, ‘Total carbon, organic carbon, and organic matter’, in: D. L. Sparks et al. (eds), Methods of Soil Analysis. Part 3. Chemical Methods, Soil Science Society of America, Madison, Wisconsin, pp. 961–1010.

    Google Scholar 

  • O’Neill, K. P. and Amacher, M. C.: 2004, ‘Indicator 18: Area and Percent of Forestland with Significant Soil Erosion’, In: {Data Report: A Supplement to the National Report on Sustainable Forests, 2003}. Report, FS-766A, U.S. Department of Agriculture, Forest Service, Washington, DC, p. 23.

    Google Scholar 

  • Overton, W. S., White, D. and Stevens, D. L.: 1990, Design Report for EMAP Environmental Monitoring and Assessment Program, Report, EPA/600/053, U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Palmer, C. J., Smith, W. D. and Conkling, B. L.: 2002, ‘Development of a protocol for monitoring status and trends in forest soil carbon at a national level’, Environ. Pollut. 116, 5209–5219.

    Article  Google Scholar 

  • Post, W. M., Emanuel, W. R., Zinke, P. J. and Stangenberger, A. G.: 1982, ‘Soil carbon pools and world life zones’, Nature 298, 156–159.

    Article  Google Scholar 

  • Powers, R. F. and Fiddler, G. O.: 1997, ‘The North American Long-Term Soil Productivity Study: Progress through the first five years’, in: Proceedings of the Eighteenth Annual Forest Vegetation Management Conference, January 14–16, 1997, Sacramento, CA, pp. 88–102.

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. and Yoder, D. C.: 1997, ‘Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation’, Agricultural Handbook No. 703, U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  • Sherrod, L. A., Dunn, G., Peterson, G. A. and Kolberg, R. L.: 2002, ‘Inorganic carbon analysis by modified pressure calcimeter method’, Soil Sci. Soc. Am. J. 66, 299–305.

    Google Scholar 

  • Smith, W. B.: 2002, ‘Forest inventory and analysis: A national inventory and monitoring program’, Environ. Pollut. 116, S233–S242.

    Article  PubMed  Google Scholar 

  • Soil Survey Laboratory: 1996, Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report, No. 42. Ver. 3.0, USDA-NRCS, Lincoln, NE.

  • Soil and Plant Analysis Council: 1999, Soil Analysis Handbook of Reference Methods, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Sombroek, W. G., Nachtergaele, F. A. and Hebel, A.: 1993, ‘Amounts, dynamics and sequestering of carbon in tropical and subtropical soils’, Ambio 22 (7), 417–426.

    Google Scholar 

  • Stapanian, M. A., Cline, S. P. and Cassell, D. L.: 1997, ‘Evaluation of a measurement method for forest vegetation in a large-scale ecological survey’, Environ. Monit. Assess. 45, 237–257.

    Article  Google Scholar 

  • Stolte, K., Conkling, B., Campbell, S. and Gillespie, A.: 2002, Forest Health Indicators, Forest Inventory and Analysis Program, Report, FS-746, U. S. Department of Agriculture, Forest Service, Washington, DC.

    Google Scholar 

  • Sumner, M. E. and Miller, W. P.: 1996. ‘Cation exchange capacity and exchange coefficients’, in: D. L. Sparks et al. (eds), Methods of Soil Analysis. Part 3. Chemical Methods, Soil Science Society of America, Madison, Wisconsin, pp. 1201–1229.

    Google Scholar 

  • Sutton, R. F.: 1991, Soil Properties and Root Development in Forest Trees: A Review, Information Report, O-X-413, Forestry Canada.

  • Thomas, G. W.: 1996, ‘Soil pH and soil acidity’, in: D. L. Sparks et al. (eds), Methods of Soil Analysis. Part 3. Chemical Methods, Soil Science Society of America, Madison, Wisconsin, pp. 475–490.

    Google Scholar 

  • U.S. Department of Agriculture: 2000, ‘Summary Report: 1997 National Resources Inventory (revised December 2000)’, Natural Resources Conservation Service, Washington, DC, and Statistical Laboratory, Iowa State University, Ames, Iowa, p. 89.

  • U.S. Department of Agriculture: 2004, {National Report on Sustainable Forests – 2003}, Report, FS-766, U. S. Department of Agriculture, Forest Service, Washington, DC, p. 139.

    Google Scholar 

  • U.S. Environmental Protection Agency (US-EPA): 1997, Environmental and Assessment Monitoring Program (EMAP) Research Strategy, EPA/620/R-98/001, United States Environmental Protection Agency, Office of Research and Development, Washington, DC.

    Google Scholar 

  • Western States Laboratory Proficiency Testing Program: 1996, ‘Soil and plant analytical methods’, Western States Laboratory Proficiency Testing Program, Utah State University, Logan, Utah.

    Google Scholar 

  • White, D., Kimerling, A. J. and Overton, W. S.: 1992, ‘Cartographic and geometric components of a global sampling design for environmental monitoring’, Cart. Geo. Inform. Sys. 19, 5–22.

    Google Scholar 

  • Wischmeier, W. H.: 1975, ‘Estimating the soil loss equation’s cover and management factor for undisturbed areas’, in: Report, ARS-40, U. S. Department of Agriculture, Agricultural Research Service, Southern Region, pp. 118–124.

    Google Scholar 

  • Woodall, C. W. and Williams, M. S.: in press, Sampling Protocol, Estimation, and Analysis Procedures for the Down Woody Materials Indicator of the FIA Program, General Technical Report, U.S. Department of Agriculture, Forest Service, St. Paul, Minnesota.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine P. O’Neill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, K.P., Amacher, M.C. & Palmer, C.J. Developing a National Indicator of Soil Quality on U.S Forestlands: Methods and Initial Results. Environ Monit Assess 107, 59–80 (2005). https://doi.org/10.1007/s10661-005-2144-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-2144-0

Keyword

Navigation