Skip to main content
Log in

The influence of patient-generated reviews and doctor-patient relationship on online consultations in China

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Online reviews are increasingly being used and researched by people worldwide. Compared with previous studies on traditional products or services, research focused on online health communities (OHCs) is still insufficient. Thus, based on cue diagnosticity theory, this research concentrates on combining two mainstream studies by incorporating the patient-generated review with the unique characteristics of online medical services–the doctor-patient relationship–to study the information processing issues in choosing consultations. We clawed the dataset, including 2865 doctors related to 152,864 patient-generated reviews and information, from the GoodDoctor website. We then employed a negative binomial regression to test our hypotheses. Interestingly, we found that the effects of review length and review volume on doctors’ consultations can be negatively moderated by the doctor-patient relationship. Our findings can serve patients, doctors, platform managers, and others to optimize the application of patients’ information processing when choosing consultations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson, J. G., Rainey, M. R., & Eysenbach, G. (2003). The impact of CyberHealthcare on the physician-patient relationship. Journal of Medical Systems, 27(1), 67–84. https://doi.org/10.1023/a:1021061229743

    Article  Google Scholar 

  2. Yan, L., & Tan, Y. (2017). The consensus effect in online health-care communities. Journal of Management Information Systems, 34(1), 11–39. https://doi.org/10.1080/07421222.2017.1296742

    Article  Google Scholar 

  3. Liu, X., Guo, X., Wu, H., & Wu, T. (2016). The impact of individual and organizational reputation on physicians’ appointments online. International Journal of Electronic Commerce, 20(4), 551–577. https://doi.org/10.1080/10864415.2016.1171977

    Article  Google Scholar 

  4. Karimi, S., & Wang, F. (2017). Online review helpfulness: impact of reviewer profile image. Decision Support Systems, 96, 39–48. https://doi.org/10.1016/j.dss.2017.02.001

    Article  Google Scholar 

  5. Yang, H., Guo, X., Wu, T., & Ju, X. (2015). Exploring the effects of patient-generated and system-generated information on patients’ online search, evaluation and decision. Electronic Commerce Research and Applications, 14(3), 192–203. https://doi.org/10.1016/j.elerap.2015.04.001

    Article  Google Scholar 

  6. Chen, Q., Yan, X., & Zhang, T. (2020). Converting visitors of physicians’ personal websites to customers in online health communities: longitudinal Study. Journal of Medical Internet Research, 22(8), e20623. https://doi.org/10.2196/20623

    Article  Google Scholar 

  7. Guo, S., Guo, X., Zhang, X., & Vogel, D. (2017). Doctor–patient relationship strength’s impact in an online healthcare community. Information Technology for Development, 24(2), 279–300. https://doi.org/10.1080/02681102.2017.1283287

    Article  Google Scholar 

  8. Han, X., Qu, J., & Zhang, T. (2019). Exploring the impact of review valence, disease risk, and trust on patient choice based on online physician reviews. Telematics and Informatics. https://doi.org/10.1016/j.tele.2019.101276

    Article  Google Scholar 

  9. Li, X. (2018). Impact of average rating on social media endorsement: the moderating role of rating dispersion and discount threshold. Information Systems Research, 29(3), 739–754. https://doi.org/10.1287/isre.2017.0728

    Article  Google Scholar 

  10. Feldman, J. M., & Lynch, J. G. (1988). Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of Applied Psychology, 73(3), 421–435. https://doi.org/10.1037/0021-9010.73.3.421

    Article  Google Scholar 

  11. Gidron, D., Koehler, D. J., & Tversky, A. (1993). Implicit quantification of personality traits. Personality and Social Psychology Bulletin, 19(5), 594–604. https://doi.org/10.1177/0146167293195011

    Article  Google Scholar 

  12. Wang, Q., Meng, L., Liu, M., Wang, Q., & Ma, Q. (2016). How do social-based cues influence consumers’ online purchase decisions? An event-related potential study. Electronic Commerce Research, 16(1), 1–26. https://doi.org/10.1007/s10660-015-9209-0

    Article  Google Scholar 

  13. Purohit, D., & Srivastava, J. (2001). Effect of manufacturer reputation, retailer reputation, and product warranty on consumer judgments of product quality: a cue diagnosticity framework. Journal of Consumer Psychology, 10(3), 123–134. https://doi.org/10.1207/s15327663jcp1003_1

    Article  Google Scholar 

  14. Chen, P., Wu, S., & Yoon, J. (2004). The impact of online recommendations and consumer feedback on sales. In International conference on information systems

  15. Dellarocas, C., Zhang, X., & Awad, N. F. (2007). Exploring the value of online product reviews in forecasting sales: the case of motion pictures. Journal of Interactive Marketing, 21(4), 23–45. https://doi.org/10.1002/dir.20087

    Article  Google Scholar 

  16. Etzion, H., & Awad, N. (2007). Pump up the volume? Examining the relationship between number of online reviews and sales: Is more necessarily better? In International conference on information systems

  17. Zhu, F., & Zhang, X. Q. (2010). Impact of online consumer reviews on sales: the moderating role of product and consumer characteristics. “Museo Argentino de Ciencias Naturales ‘“Bernardino Rivadavia”’ e Instituto Nacional de Investigacion de las Ciencias Naturales Extra”Academic Radiology Journal of Marketing, 74(2), 133–148. https://doi.org/10.1509/jmkg.74.2.133

    Article  Google Scholar 

  18. Hu, X., Wu, G., Wu, Y., & Zhang, H. (2010). The effects of Web assurance seals on consumers’ initial trust in an online vendor: a functional perspective. Decision Support Systems, 48(2), 407–418. https://doi.org/10.1016/j.dss.2009.10.004

    Article  Google Scholar 

  19. Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201–214. https://doi.org/10.1007/s10799-008-0041-2

    Article  Google Scholar 

  20. Fei, M., Tan, H., Peng, X., Wang, Q., & Wang, L. (2021). Promoting or attenuating? An eye-tracking study on the role of social cues in e-commerce livestreaming. Decision Support Systems. https://doi.org/10.1016/j.dss.2020.113466

    Article  Google Scholar 

  21. Wang, Q., Cui, X., Huang, L., & Dai, Y. (2016). Seller reputation or product presentation? An empirical investigation from cue utilization perspective. International Journal of Information Management, 36(3), 271–283. https://doi.org/10.1016/j.ijinfomgt.2015.12.006

    Article  Google Scholar 

  22. Guo, S., Guo, X., Fang, Y., & Vogel, D. (2017). How Doctors Gain Social and Economic Returns in Online Health-Care Communities: A Professional Capital Perspective. Journal of Management Information Systems, 34(2), 487–519. https://doi.org/10.1080/07421222.2017.1334480

    Article  Google Scholar 

  23. Wu, H., & Lu, N. (2017). Online written consultation, telephone consultation and offline appointment: An examination of the channel effect in online health communities. International Journal of Medical Informatics, 107, 107–119. https://doi.org/10.1016/j.ijmedinf.2017.08.009

    Article  Google Scholar 

  24. Zhang, X., Guo, X., Lai, K.-H., & Yi, W. (2018). How does online interactional unfairness matter for patient–doctor relationship quality in online health consultation? The contingencies of professional seniority and disease severity. European Journal of Information Systems, 28(3), 336–354. https://doi.org/10.1080/0960085x.2018.1547354

    Article  Google Scholar 

  25. Akdeniz, B., Calantone, R. J., & Voorhees, C. M. (2013). Effectiveness of marketing cues on consumer perceptions of quality: the moderating roles of brand reputation and third-party information. Psychology & Marketing, 30(1), 76–89. https://doi.org/10.1002/mar.20590

    Article  Google Scholar 

  26. Wen, J., Lin, Z. B., Liu, X., Xiao, S. H., & Li, Y. N. (2020). The interaction effects of online reviews, brand, and price on consumer hotel booking decision making. Journal of Travel Research. https://doi.org/10.1177/0047287520912330

    Article  Google Scholar 

  27. Miyazaki, A. D., Grewal, D., & Goodstein, R. C. (2005). The effect of multiple extrinsic cues on quality perceptions: a matter of consistency. Journal of Consumer Research, 32(1), 146–153. https://doi.org/10.1086/429606

    Article  Google Scholar 

  28. Yan, L. L., Yan, X., Tan, Y., & Sun, S. X. (2019). Shared minds: how patients use collaborative information sharing via social media platforms. Production and Operations Management, 28(1), 9–26. https://doi.org/10.1111/poms.12895

    Article  Google Scholar 

  29. Grabner-Kräuter, S., & Waiguny, M. K. (2015). Insights into the impact of online physician reviews on patients’ decision making: randomized experiment. Journal of Medical Internet Research, 17(4), 16. https://doi.org/10.2196/jmir.3991

    Article  Google Scholar 

  30. Mudambi, S. M., & Schuff, D. (2010). What makes a helpful online review? A study of customer reviews on amazon.com. MIS Quarterly, 34(1), 185–200.

    Article  Google Scholar 

  31. Guo, B., & Zhou, S. (2016). What makes population perception of review helpfulness: an information processing perspective. Electronic Commerce Research, 17(4), 585–608. https://doi.org/10.1007/s10660-016-9234-7

    Article  Google Scholar 

  32. Baek, H., Ahn, J., & Choi, Y. (2014). Helpfulness of online consumer reviews: readers’ objectives and review cues. International Journal of Electronic Commerce, 17(2), 99–126. https://doi.org/10.2753/jec1086-4415170204

    Article  Google Scholar 

  33. Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: online book reviews. Journal of Marketing Research, 43(3), 345–354. https://doi.org/10.1509/jmkr.43.3.345

    Article  Google Scholar 

  34. Sharma, H., & Aggarwal, A. G. (2021). The influence of user generated content on hotel sales: An Indian perspective. Journal of Modelling in Management, ahead-of-print(ahead-of-print)

  35. Yang, J., Sarathy, R., & Lee, J. (2016). The effect of product review balance and volume on online Shoppers’ risk perception and purchase intention. Decision Support Systems, 89, 66–76. https://doi.org/10.1016/j.dss.2016.06.009

    Article  Google Scholar 

  36. Zhang, C., & Zhou, Q. (2018). Online investigation of users’ attitudes using automatic question answering. Online Information Review, 42(3), 419–435. https://doi.org/10.1108/oir-10-2016-0299

    Article  Google Scholar 

  37. Lei, L., Ke, Z., Zhou, Q., & Zhang, C. (2016). Toward understanding review usefulness: A case study on Yelp restaurants. In Iconference

  38. Zhang, C., Tong, T., & Bu, Y. (2019). Examining differences among book reviews from various online platforms. Online Information Review, 43(7), 1169–1187. https://doi.org/10.1108/oir-01-2019-0037

    Article  Google Scholar 

  39. Zhou, Q., Zhang, C., Zhao, S. X., & Chen, B. (2016). Measuring book impact based on the multi-granularity online review mining. Scientometrics, 107(3), 1435–1455. https://doi.org/10.1007/s11192-016-1930-5

    Article  Google Scholar 

  40. Zhou, Q., Xia, R., & Zhang, C. (2016). Online shopping behavior study based on multi-granularity opinion mining: china versus America. Cognitive Computation, 8(4), 587–602. https://doi.org/10.1007/s12559-016-9384-x

    Article  Google Scholar 

  41. Eveleigh, R. M., Muskens, E., van Ravesteijn, H., van Dijk, I., van Rijswijk, E., & Lucassen, P. (2012). An overview of 19 instruments assessing the doctor-patient relationship: different models or concepts are used. Journal of Clinical Epidemiology, 65(1), 10–15. https://doi.org/10.1016/j.jclinepi.2011.05.011

    Article  Google Scholar 

  42. Ridd, M., Shaw, A., Lewis, G., & Salisbury, C. (2009). The patient-doctor relationship: a synthesis of the qualitative literature on patients’ perspectives. British Journal of General Practice, 59(561), e116-133. https://doi.org/10.3399/bjgp09X420248

    Article  Google Scholar 

  43. Haluza, D., Naszay, M., Stockinger, A., & Jungwirth, D. (2017). Digital natives versus digital immigrants: influence of online health information seeking on the doctor-patient relationship. Health Communication, 32(11), 1342–1349. https://doi.org/10.1080/10410236.2016.1220044

    Article  Google Scholar 

  44. Grabner-Krauter, S., & Waiguny, M. K. (2015). Insights into the impact of online physician reviews on patients’ decision making: Randomized experiment. Journal of Medical Internet Research, 17(4), e93. https://doi.org/10.2196/jmir.3991

    Article  Google Scholar 

  45. Rao, A. R., & Monroe, K. B. (1988). The moderating effect of prior knowledge on cue utilization in product evaluations. Journal of Consumer Research, 15(2), 253–264. https://doi.org/10.1086/209162

    Article  Google Scholar 

  46. Filieri, R. (2016). What makes an online consumer review trustworthy? Annals of Tourism Research, 58, 46–64. https://doi.org/10.1016/j.annals.2015.12.019

    Article  Google Scholar 

  47. Hong, H., Xu, D., Wang, G. A., & Fan, W. (2017). Understanding the determinants of online review helpfulness: a meta-analytic investigation. Decision Support Systems, 102, 1–11. https://doi.org/10.1016/j.dss.2017.06.007

    Article  Google Scholar 

  48. Hong, Y. A., Liang, C., Radcliff, T. A., Wigfall, L. T., & Street, R. L. (2019). What do patients say about doctors online? A systematic review of studies on patient online reviews. Journal of Medical Internet Research, 21(4), 14. https://doi.org/10.2196/12521

    Article  Google Scholar 

  49. Emmert, M., Meier, F., Heider, A. K., Durr, C., & Sander, U. (2014). What do patients say about their physicians? An analysis of 3000 narrative comments posted on a German physician rating website. Health Policy, 118(1), 66–73. https://doi.org/10.1016/j.healthpol.2014.04.015

    Article  Google Scholar 

  50. Kadry, B., Chu, L. F., Kadry, B., Gammas, D., & Macario, A. (2011). Analysis of 4999 online physician ratings indicates that most patients give physicians a favorable rating. Journal of Medical Internet Research, 13(4), e95. https://doi.org/10.2196/jmir.1960

    Article  Google Scholar 

  51. Lagu, T., Hannon, N. S., Rothberg, M. B., & Lindenauer, P. K. (2010). Patients’ evaluations of health care providers in the era of social networking: An analysis of physician-rating websites. Journal of General Internal Medicine, 25(9), 942–946. https://doi.org/10.1007/s11606-010-1383-0

    Article  Google Scholar 

  52. Carbonell, G., Meshi, D., & Brand, M. (2018). The use of recommendations on physician rating websites: the number of raters makes the difference when adjusting decisions. Health Communication, 34(13), 1653–1662. https://doi.org/10.1080/10410236.2018.1517636

    Article  Google Scholar 

  53. Zhou, S., & Guo, B. (2017). The order effect on online review helpfulness: a social influence perspective. Decision Support Systems, 93, 77–87. https://doi.org/10.1016/j.dss.2016.09.016

    Article  Google Scholar 

  54. Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: a literature analysis and integrative model. Decision Support Systems, 54(1), 461–470. https://doi.org/10.1016/j.dss.2012.06.008

    Article  Google Scholar 

  55. Liu, Y. (2018). Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue. Journal of Marketing, 70(3), 74–89. https://doi.org/10.1509/jmkg.70.3.074

    Article  Google Scholar 

  56. Khare, A., Labrecque, L. I., & Asare, A. K. (2011). The assimilative and contrastive effects of word-of-mouth volume: an experimental examination of online consumer ratings. Journal of Retailing, 87(1), 111–126. https://doi.org/10.1016/j.jretai.2011.01.005

    Article  Google Scholar 

  57. Hao, H., & Zhang, K. (2016). The voice of chinese health consumers: a text mining approach to web-based physician reviews. Journal of Medical Internet Research, 18(5), e108. https://doi.org/10.2196/jmir.4430

    Article  Google Scholar 

  58. Hao, H. (2015). The development of online doctor reviews in China: An analysis of the largest online doctor review website in China. Journal of Medical Internet Research, 17(6), e134. https://doi.org/10.2196/jmir.4365

    Article  Google Scholar 

  59. Deng, Z., Hong, Z., Zhang, W., Evans, R., & Chen, Y. (2019). The effect of online effort and reputation of physicians on patients’ choice: 3-wave data analysis of china’s good doctor website. Journal of Medical Internet Research, 21(3), e10170. https://doi.org/10.2196/10170

    Article  Google Scholar 

  60. Glaeser, E. L., Laibson, D., & Sacerdote, B. (2002). An economic approach to social capital. Economic Journal, 112(483), F437–F458. https://doi.org/10.1111/1468-0297.00078

    Article  Google Scholar 

  61. Wang, J.-N., Chiu, Y.-L., Yu, H., & Hsu, Y.-T. (2017). Understanding a nonlinear causal relationship between rewards and physicians’ contributions in online health care communities: longitudinal study. Journal of Medical Internet Research, 19(12), e427. https://doi.org/10.2196/jmir.9082

    Article  Google Scholar 

  62. Liu, S., Lu, Y., Liang, Q., & Wei, E. (2010). Moderating effect of cultural values on decision making of gift-giving from a perspective of self-congruity theory: an empirical study from Chinese context. Journal of Consumer Marketing, 27(7), 604–614. https://doi.org/10.1108/07363761011086353

    Article  Google Scholar 

  63. Yang, J. (2013). The impact of informal payments on quality and equality in the Chinese health care system: a study from the perspective of doctors. Health Sociology Review, 22(3), 268–281. https://doi.org/10.5172/hesr.2013.22.3.268

    Article  Google Scholar 

  64. Crosby, L. A., Evans, K. R., & Cowles, D. (1990). Relationship quality in services selling: an interpersonal influence perspective. Journal of Marketing, 54(3), 68–81. https://doi.org/10.2307/1251817

    Article  Google Scholar 

  65. Luo, P., Chen, K., Wu, C., & Li, Y. (2018). Exploring the social influence of multichannel access in an online health community. Journal of the Association for Information Science and Technology, 69(1), 98–109. https://doi.org/10.1002/asi.23928

    Article  Google Scholar 

  66. Chen, L., Baird, A., & Straub, D. (2019). Why do participants continue to contribute? Evaluation of usefulness voting and commenting motivational affordances within an online knowledge community. Decision Support Systems, 118, 21–32. https://doi.org/10.1016/j.dss.2018.12.008

    Article  Google Scholar 

  67. Khurana, S., Qiu, L., & Kumar, S. (2019). When a doctor knows, it shows: an empirical analysis of doctors’ responses in a Q&A forum of an online healthcare portal. Information Systems Research, 30(3), 872–891. https://doi.org/10.1287/isre.2019.0836

    Article  Google Scholar 

  68. Chang, H. H., & Chuang, S.-S. (2011). Social capital and individual motivations on knowledge sharing: participant involvement as a moderator. Information & Management, 48(1), 9–18. https://doi.org/10.1016/j.im.2010.11.001

    Article  Google Scholar 

  69. Lia, X., Wu, C., & Mai, F. (2019). The effect of online reviews on product sales: a joint sentiment-topic analysis. Information & Management, 56(2), 172–184. https://doi.org/10.1016/j.im.2018.04.007

    Article  Google Scholar 

  70. Zhou, Y., & Yang, S. (2019). Roles of review numerical and textual characteristics on review helpfulness across three different types of reviews. IEEE Access, 7, 27769–27780. https://doi.org/10.1109/access.2019.2901472

    Article  Google Scholar 

  71. Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data. https://doi.org/10.1186/s40537-015-0015-2

    Article  Google Scholar 

  72. Yang, S., Zhou, Y., Yao, J., Chen, Y., & Wei, J. (2019). Understanding online review helpfulness in omnichannel retailing. Industrial Management & Data Systems, 119(8), 1565–1580. https://doi.org/10.1108/imds-10-2018-0450

    Article  Google Scholar 

  73. Yang, H., Du, H. S., He, W., & Qiao, H. (2019). Understanding the motivators affecting doctors’ contributions in online healthcare communities: Professional status as a moderator. Behaviour & Information Technology. https://doi.org/10.1080/0144929x.2019.1679887

    Article  Google Scholar 

  74. Alkureishi, M. A., Lee, W. W., Lyons, M., Press, V. G., Imam, S., Nkansah-Amankra, A., et al. (2016). Impact of electronic medical record use on the patient-doctor relationship and communication: a systematic review. Journal of General Internal Medicine, 31(5), 548–560. https://doi.org/10.1007/s11606-015-3582-1

    Article  Google Scholar 

  75. Guo, J., Wang, X., & Wu, Y. (2020). Positive emotion bias: role of emotional content from online customer reviews in purchase decisions. Journal of Retailing and Consumer Services. https://doi.org/10.1016/j.jretconser.2019.101891

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the editors and anonymous reviewers for their valuable suggestions and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwen Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhou, H., Chen, Y. et al. The influence of patient-generated reviews and doctor-patient relationship on online consultations in China. Electron Commer Res 23, 1115–1141 (2023). https://doi.org/10.1007/s10660-021-09506-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-021-09506-8

Keywords

Navigation