Electronic Commerce Research

, Volume 11, Issue 2, pp 201–214 | Cite as

Gender differences in consumers’ perception of online consumer reviews

Article

Abstract

Since the early days of the Internet, gender gap has existed in using the Internet, and it is particularly evident for online shopping. Females perceive higher level of risk for online shopping, and as a result, they tend to hesitate to make purchase online. Online consumer reviews can effectively mitigate such perceived risk by females and thereby attract them to buy online. This study investigates the effect of online consumer reviews on consumer’s purchase intention. In particular, we examine whether there are gender differences in responding to online consumer reviews. The results show that the effect of online consumer reviews on purchase intention is stronger for females than males. The negativity effect, that consumers are influenced by a negative review more than by a positive review, is also found to be more evident for females. These findings have practical implications for online sellers to guide them to effectively use online consumer reviews to engage females in online shopping.

Keywords

e-Business Electronic word-of-mouth Online consumer reviews The gender gap Purchase intention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahluwalia, R. (2000). Examination of psychological processes underlying resistance to persuasion. Journal of Consumer Research, 27(2), 217–232. CrossRefGoogle Scholar
  2. 2.
    Arthur, C. (1992). Fifteen million Americans are shopping addicts. American Demographics, 14(3), 14–15. Google Scholar
  3. 3.
    Bartel-Sheehan, K. (1999). An investigation of gender differences in on-line privacy concerns and resultant behaviors. Journal of Interactive Marketing, 13(4), 24–38. CrossRefGoogle Scholar
  4. 4.
    Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31–40. CrossRefGoogle Scholar
  5. 5.
    Bimber, B. (2000). Measuring the gender gap on the Internet. Social Science Quarterly, 81(3), 868–876. Google Scholar
  6. 6.
    Bonabeau, E. (2004). The perils of the imitation age. Harvard Business Review, 82(6), 45–54. Google Scholar
  7. 7.
    Briones, M. G. (1998). On-line retailers seek ways to close shopping gender gap. Marketing News, 32, 2. Google Scholar
  8. 8.
    Bybee, J., Glick, M., & Zigler, E. (1990). Differences across gender, grade level, and academic track in the content of the ideal self-image. Sex Roles, 22(5–6), 349–358. CrossRefGoogle Scholar
  9. 9.
    Carl, W. (2005). Word-of-mouth and gender. http://wom-study.blogspot.com/2005/06/word-of-mouth-and-gender.html.
  10. 10.
    Chatterjee, P. (2001). Online reviews: do consumers use them? In The Proceedings of ACR 2001 (pp. 129–134). Google Scholar
  11. 11.
    Chen, Y., & Xie, J. (2008). Online consumer review: word-of-mouth as a new element of marketing communication mix. Management Science, 54(3), 477–492. CrossRefGoogle Scholar
  12. 12.
    Cheong, H. J., & Morrison, M. A. (2008). Consumers’ reliance on product information and recommendations found in UGC. Journal of Interactive Advertising, 8(2), 38–49. Google Scholar
  13. 13.
    Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: online book reviews. Journal of Marketing Research, 43(3), 345–354. CrossRefGoogle Scholar
  14. 14.
    Chu, W., Choi, B., & Song, M. R. (2005). The Role of on-line retailer brand and infomediary reputation in increasing consumer purchase intention. International Journal of Electronic Commerce, 9(3), 115–127. Google Scholar
  15. 15.
    Clancy, S. M., & Dollinger, S. J. (1993). Photographic depictions of the self: gender and age differences in social connectedness. Sex Roles, 29(7–8), 477–495. CrossRefGoogle Scholar
  16. 16.
    Dellarocas, C., Zhang, X. M., & Awad, N. F. (2007). Exploring the value of online product reviews in forecasting sales: the case of motion pictures. Journal of Interactive Marketing, 21(4), 23–45. CrossRefGoogle Scholar
  17. 17.
    Duan, W., Gu, B., & Whinston, A. B. (2008). The dynamics of online word-of-mouth and product sales—an empirical investigation of the movie industry. Journal of Retailing, 84(2), 233–242. CrossRefGoogle Scholar
  18. 18.
    Duhan, D. F., Johnson, S. D., Wilcox, J. B., & Harell, G. D. (1997). Influences on consumer use of word-of-mouth recommendation sources. Journal of the Academy of Marketing Science, 25(4), 283–295. CrossRefGoogle Scholar
  19. 19.
    Eagly, A. H., & Carli, L. L. (1981). Sex of researchers and sex-typed communications as determinants of sex differences in influenceability: a meta-analysis of social influence studies. Psychological Bulletin, 90(1), 1–20. CrossRefGoogle Scholar
  20. 20.
    Gallagher, K., Parsons, J., & Foster, K. D. (2001). A tale of two studies: replicating “Advertising effectiveness and content evaluation in print on the Web”. Journal of Advertising Research, 41(4), 71–81. Google Scholar
  21. 21.
    Garbarino, E., & Strahilevitz, M. (2004). Gender differences in the perceived risk of buying online and the effects of receiving a site recommendation. Journal of Business Research, 57(7), 768–775. CrossRefGoogle Scholar
  22. 22.
    Gefen, D., & Straub, D. W. (1997). Gender differences in the perception and use of e-mail: an extension to the technology acceptance model. MIS Quarterly, 21(4), 389–400. CrossRefGoogle Scholar
  23. 23.
    Gilly, M. C., Graham, J. L., Wolfinbarger, M. F., & Yale, L. J. (1998). A dyadic study of personal information search. Journal of the Academy of Marketing Science, 26(2), 83–100. CrossRefGoogle Scholar
  24. 24.
    Goel, L., & Prokopec, S. (2009). If you build it will they come?—an empirical investigation of consumer perceptions and strategy in virtual worlds. Electronic Commerce Research, 9(1–2), 115–134. CrossRefGoogle Scholar
  25. 25.
    Graeff, T. R., & Harmons, S. (2002). Collecting and using personal data: consumers’ awareness and concerns. Journal of Consumer Marketing, 19(4), 302–318. CrossRefGoogle Scholar
  26. 26.
    Hargittai, E., & Shafer, S. (2006). Differences in actual perceived online skills: the role of gender. Social Science Quarterly, 87(2), 432–448. CrossRefGoogle Scholar
  27. 27.
    Horrigan, J. B. (2008). Online shopping. Pew Internet and American Life Project. Google Scholar
  28. 28.
    Huang, J. H., & Chen, Y. F. (2006). Herding in online product choice. Psychology and Marketing, 23(5), 413–428. CrossRefGoogle Scholar
  29. 29.
    Hupfer, M. E., & Detlor, B. (2006). Gender and Web information seeking: a self-concept orientation model. Journal of the American Society for Information Science and Technology, 57(8), 1105–1115. CrossRefGoogle Scholar
  30. 30.
    Jackson, L. A., Ervin, K. S., Gardner, P. D., & Schmitt, N. (2001). Gender and the Internet: women communicating and men searching. Sex Roles, 44(5–6), 363–379. CrossRefGoogle Scholar
  31. 31.
    Jones, S., Johnson-Yale, C., Millermaier, S., & Pérez, F. S. (2009). U.S. college students’ Internet use: race, gender and digital divides. Journal of Computer-Mediated Communication, 14(2), 244–264. CrossRefGoogle Scholar
  32. 32.
    Kate, N. T. (1998). Women want privacy. American Demographics, 20(1), 37. Google Scholar
  33. 33.
    Kempf, D. A. S., & Palan, K. M. (2006). The effects of gender and argument strength on the processing of word-of-mouth communication. Academy of Marketing Studies Journal, 10(1), 1–18. Google Scholar
  34. 34.
    Maheswaran, D., & Meyers-Levy, J. (1990). The influence of message framing and issue involvement. Journal of Marketing Research, 27(3), 361–367. CrossRefGoogle Scholar
  35. 35.
    Meyers-Levy, J., & Maheswaran, D. (1991). Exploring differences in males’ and females’ processing strategies. Journal of Consumer Research, 18(1), 63–70. CrossRefGoogle Scholar
  36. 36.
    Mine, G. R., & Rhom, A. J. (2000). Consumer privacy and name removal across direct marketing channels: exploring opt-in and opt-out alternatives. Journal of Public Policy and Marketing, 19(2), 238–249. CrossRefGoogle Scholar
  37. 37.
    Miyazaki, A. D., & Fernandez, A. (2001). Consumer perceptions of privacy and security risks for online shopping. Journal of Consumer Affairs, 35(1), 27–44. CrossRefGoogle Scholar
  38. 38.
    Morahan-Martin, J. (1998). The gender gap in Internet use: why men use the Internet more than women—a literature review. Cyber Psychology and Behavior, 1(1), 3–10. Google Scholar
  39. 39.
    Odell, P. M., Korgen, K. O., Schumacher, P., & Delucchi, M. (2000). Internet use among female and male college students. Cyber Psychology & Behavior, 3(5), 855–862. Google Scholar
  40. 40.
    Ono, H., & Zavodny, M. (2003). Gender and the Internet. Social Science Quarterly, 84(1), 111–121. CrossRefGoogle Scholar
  41. 41.
    Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect: a moderating role of product type. Journal of Business Research, 62(1), 61–67. CrossRefGoogle Scholar
  42. 42.
    Park, D. H., Lee, J. M., & Han, I. G. (2007). The effects of on-line consumer reviews on consumer purchasing intention: the moderating role of involvement. International Journal of Electronic Commerce, 11(4), 125–148. CrossRefGoogle Scholar
  43. 43.
    Paul, P. (2001). Mixed signals: when it comes to issues of privacy, consumers are fraught with contradictions. American Demographics, 23, 45–49. Google Scholar
  44. 44.
    Rodgers, S., & Harris, M. A. (2003). Gender and e-commerce: an exploratory study. Journal of Advertising Research, 43(3), 322–329. CrossRefGoogle Scholar
  45. 45.
    Sen, S., & Lerman, D. (2007). Why are you telling me this? an examination into negative consumer reviews on the Web. Journal of Interactive Marketing, 21(4), 76–94. CrossRefGoogle Scholar
  46. 46.
    Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159–169. CrossRefGoogle Scholar
  47. 47.
    Sherman, R. C., End, C., Kraan, E., Cole, A., Campbell, J., Birchmeier, Z., & Klausner, J. (2000). The Internet gender gap among college students: forgotten but not gone? Cyber Psychology & Behavior, 3(5), 885–894. Google Scholar
  48. 48.
    Shimp, T. A., & Bearden, W. O. (1982). Warranty and other extrinsic cue effects on consumers’ risk perceptions. Journal of Consumer Research, 9(1), 38–46. CrossRefGoogle Scholar
  49. 49.
    Slyke, C. V., Comunale, C. L., & Belanger, F. (2002). Gender differences in perceptions of web-based shopping. Communication of the ACM, 45(8), 82–86. CrossRefGoogle Scholar
  50. 50.
    Smith, D., Menon, S., & Sivakumar, K. (2005). Online peer and editorial recommendations, trust, and choice in virtual markets. Journal of Interactive Marketing, 19(3), 15–37. CrossRefGoogle Scholar
  51. 51.
    Spence, J. T., & Helmreich, R. L. (1979). Comparison of masculine and feminine personality attributes and sex-role attitudes across age groups. Developmental Psychology, 15(5), 583–584. CrossRefGoogle Scholar
  52. 52.
    Wasserman, I. M., & Richmond-Abbott, M. (2005). Gender and the Internet: cause of variation in access, level, and scope of use. Social Science Quarterly, 86(1), 252–270. CrossRefGoogle Scholar
  53. 53.
    Weiser, E. B. (2000). Gender differences in Internet use patterns and Internet application preferences: a two-sample comparison. Cyber Psychology and Behavior, 3(2), 167–178. Google Scholar
  54. 54.
    White, J. D., & Truly, E. L. (1989). Price–quality integration in warranty evaluation a preliminary test of alternative models of risk assessment. Journal of Business Research, 19(2), 109–125. CrossRefGoogle Scholar
  55. 55.
    Wilder, G., Makie, D., & Cooper, J. (1985). Gender and computers: two surveys of computer-related attitudes. Sex Roles, 13(3–4), 215–228. CrossRefGoogle Scholar
  56. 56.
    Yang, C., & Wu, C. C. (2006). Gender differences in online shoppers’ decision-making styles. e-Business and Telecommunication Networks, 99–106. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations