Skip to main content
Log in

An Eulerian Formulation of a Growing Constrained Elastic-Viscoplastic Generalized Membrane

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A thermomechanical generalized Cosserat membrane has no resistance to bending but it allows for deformations through the membrane’s thickness. This theory is generalized to allow for growth due to mass supply and is constrained to eliminate shear deformations but retain thickness changes. An Eulerian formulation of isothermal elastic-viscoplastic constitutive equations is developed using evolution equations for elastic dilatation and elastic distortional deformations. These evolution equations include time-dependent inelastic effects of homeostasis which cause a tendency for the elastic deformation measures to approach their homeostatic values. An important feature of the Eulerian evolution equations is that they depend only on the current state of the membrane and therefore are appropriate for modeling growth. Examples of zero-stress growth and constrained growth are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambrosi, D., Ateshian, G.A., Arruda, E.M., Cowin, S., Dumais, J., Goriely, A., Holzapfel, G.A., Humphrey, J.D., Kemkemer, R., Kuhl, E., et al.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863–883 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Ateshian, G., Humphrey, J.: Continuum mixture models of biological growth and remodeling: past successes and future opportunities. Annu. Rev. Biomed. Eng. 14, 97–111 (2012)

    Google Scholar 

  3. Ateshian, G.A., Costa, K.D., Azeloglu, E.U., Morrison, B., Hung, C.T.: Continuum modeling of biological tissue growth by cell division, and alteration of intracellular osmolytes and extracellular fixed charge density. J. Biomech. Eng. 131, 101001 (2009)

    Google Scholar 

  4. Bilby, B., Gardner, L., Stroh, A.: Continuous distributions of dislocations and the theory of plasticity. In: Proceedings of the 9th International Congress of Applied Mechanics, University de Brussels, pp. 35–44 (1957).

    Google Scholar 

  5. Chen, Y.c., Hoger, A.: Constitutive functions of elastic materials in finite growth and deformation. In: Advances in Continuum Mechanics and Thermodynamics of Material Behavior, pp. 175–193. Springer, Berlin (2000)

    Google Scholar 

  6. Cowin, S.C.: Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108, 83–88 (1986)

    Google Scholar 

  7. Cowin, S.C.: Tissue growth and remodeling. Annu. Rev. Biomed. Eng. 6, 77–107 (2004)

    Google Scholar 

  8. Cowin, S.C., Hegedus, D.: Bone remodeling i: theory of adaptive elasticity. J. Elast. 6, 313–326 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)

    MathSciNet  MATH  Google Scholar 

  10. Goriely, A.: The Mathematics and Mechanics of Biological Growth, vol. 45. Springer, Berlin (2017)

    MATH  Google Scholar 

  11. Goriely, A., Robertson-Tessi, M., Tabor, M., Vandiver, R.: Elastic growth models. In: Mathematical Modelling of Biosystems, pp. 1–44. Springer, Berlin (2008)

    Google Scholar 

  12. Green, A.E., Naghdi, P.M.: A dynamical theory of interacting continua. Int. J. Eng. Sci. 3, 231–241 (1965)

    MathSciNet  Google Scholar 

  13. Green, A.E., Naghdi, P.M.: A theory of mixtures. Arch. Ration. Mech. Anal. 24, 243–263 (1967)

    MathSciNet  Google Scholar 

  14. Green, A.E., Naghdi, P.M.: Non-isothermal theory of rods, plates and shells. Int. J. Solids Struct. 6, 209–244 (1970)

    MATH  Google Scholar 

  15. Green, A.E., Naghdi, P.M.: On thermodynamics and the nature of the second law. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 357, 253–270 (1977)

    MathSciNet  Google Scholar 

  16. Green, A.E., Naghdi, P.M.: A unified procedure for construction of theories of deformable media. ii. Generalized continua. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 448, 357–377 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Hollenstein, M., Jabareen, M., Rubin, M.B.: Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Comput. Mech. 52, 649–667 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Hollenstein, M., Jabareen, M., Rubin, M.B.: Erratum to: modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Comput. Mech. 55, 453 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Hsu, F.H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303–311 (1968)

    Google Scholar 

  20. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12, 407–430 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Jenkins, J.T.: The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32, 755–764 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Kröner, E.: General continuum theory of dislocations and intrinsic stresses. Arch. Ration. Mech. Anal. 4, 273 (1959)

    Google Scholar 

  23. Kuhl, E.: Growing matter: a review of growth in living systems. J. Mech. Behav. Biomed. Mater. 29, 529–543 (2014)

    Google Scholar 

  24. Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Le Dret, H., Raoult, A.: Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Ration. Mech. Anal. 154, 101–134 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    MATH  Google Scholar 

  28. Leonov, A.: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 15, 85–98 (1976)

    MATH  Google Scholar 

  29. Naghdi, P.M.: The theory of shells and plates. In: Linear Theories of Elasticity and Thermoelasticity. Springer, Berlin (1972)

    Google Scholar 

  30. Onat, E.: The notion of state and its implications in thermodynamics of inelastic solids. In: Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, pp. 292–314. Springer, Berlin (1968)

    Google Scholar 

  31. Rausch, M.K., Kuhl, E.: On the mechanics of growing thin biological membranes. J. Mech. Phys. Solids 63, 128–140 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Google Scholar 

  33. Rubin, M.B.: Hyperbolic heat conduction and the second law. Int. J. Eng. Sci. 30, 1665–1676 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Rubin, M.B.: Plasticity theory formulated in terms of physically based microstructural variables–part 1: theory. Int. J. Solids Struct. 31, 2615–2634 (1994)

    MATH  Google Scholar 

  35. Rubin, M.B.: On the treatment of elastic deformation in finite elastic-viscoplastic theory. Int. J. Plast. 12, 951–965 (1996)

    MATH  Google Scholar 

  36. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Solid Mechanics and Its Applications, vol. 79. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  37. Rubin, M.B.: Physical reasons for abandoning plastic deformation measures in plasticity and viscoplasticity theory. Arch. Mech. 53, 519–539 (2001)

    MATH  Google Scholar 

  38. Rubin, M.B.: Removal of unphysical arbitrariness in constitutive equations for elastically anisotropic nonlinear elastic–viscoplastic solids. Int. J. Eng. Sci. 2012, 38–45 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Rubin, M.B.: Invariance under superposed rigid body motions with constraints. J. Elast. 142, 83–88 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Rubin, M.B.: Modeling orthotropic elastic-inelastic response of growing tissues with application to stresses in arteries. Mech. Soft Mater. 3, 1–27 (2021)

    Google Scholar 

  41. Rubin, M.B.: Continuum Mechanics with Eulerian Formulations of Constitutive Equations, vol. 265. Springer, Switzerland (2021)

    MATH  Google Scholar 

  42. Rubin, M.B., Safadi, M.M., Jabareen, M.: A unified theoretical structure for modeling interstitial growth and muscle activation in soft tissues. Int. J. Eng. Sci. 90, 1–26 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Sciumè, G., Shelton, S., Gray, W.G., Miller, C.T., Hussain, F., Ferrari, M., Decuzzi, P., Schrefler, B.: A multiphase model for three-dimensional tumor growth. New J. Phys. 15, 015005 (2013)

    Google Scholar 

  44. Skalak, R.: Growth as a finite displacement field. In: Proceedings of the IUTAM Symposium on Finite Elasticity, pp. 347–355. Springer, Berlin (1981)

    Google Scholar 

  45. Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., Vilmann, H.: Analytical description of growth. J. Theor. Biol. 94, 555–577 (1982)

    MathSciNet  Google Scholar 

  46. Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344 (1962)

    Google Scholar 

  47. Truesdell, C., Toupin, R.: The classical field theories. In: Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, pp. 226–858. Springer, Berlin (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I am a sole author responsible for all aspects of this manuscript.

Corresponding author

Correspondence to M. B. Rubin.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

This paper is dedicated to Professor Roger Fosdick in honor of his 85th birthday

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details of Some Developments

Appendix: Details of Some Developments

Using (15), (17) and the divergence theorem (18) it follows that

$$ \begin{aligned} &\int_{{\partial}P} {\mathbf{t}}ds = \int_{{\partial}P} { \mathbf{N}}{\mathbf{n}}ds \int_{P} \text{div}_{n} {\mathbf{N}}\, d \sigma\,, \\ &\int_{{\partial}P} {\mathbf{t}}\cdot{\mathbf{v}}ds = \int_{{ \partial}P} {\mathbf{v}}\cdot{\mathbf{N}}{\mathbf{n}}ds \int_{P} \text{div}_{n} ({\mathbf{v}}\cdot{\mathbf{N}}) \, d \sigma\,, \\ &\int_{{\partial}P} {\boldsymbol{\pi}}\cdot{\mathbf{n}}ds = \int_{P} \text{div}_{n} {\boldsymbol{\pi}}\, d \sigma\,, \quad\int_{{ \partial}P} \theta{\boldsymbol{\pi}}\cdot{\mathbf{n}}ds = \int_{P} \text{div}_{n} (\theta{\boldsymbol{\pi}}) \, d \sigma\,, \\ &\int_{{\partial}P} {\boldsymbol{\pi}}^{3} \cdot{\mathbf{n}}ds = \int_{P} \text{div}_{n} {\boldsymbol{\pi}}^{3} \, d \sigma\,, \quad\int_{{\partial}P} \theta_{3} {\boldsymbol{\pi}}^{3} \cdot{ \mathbf{n}}ds = \int_{P} \text{div}_{n} (\theta_{3} { \boldsymbol{\pi}}^{3}) \, d \sigma\,. \end{aligned} $$
(105)

Moreover, with the help of (9), (16), (17) and (21)

$$ \begin{aligned} &\text{div}_{s} {\mathbf{N}}= \text{div}_{n} {\mathbf{N}}= a^{-1/2} (a^{1/2} {\mathbf{N}}{\mathbf{d}}^{\alpha}),_{\alpha}= a^{-1/2} {\mathbf{t}}^{ \alpha},_{\alpha}\,, \\ &\text{div}_{s} ({\mathbf{v}}\cdot{\mathbf{N}}) = \text{div}_{n} ({ \mathbf{v}}\cdot{\mathbf{N}}) = a^{-1/2} ({\mathbf{v}}\cdot{ \mathbf{t}}^{\alpha},_{\alpha}+ {\mathbf{w}}_{\alpha}\cdot{ \mathbf{t}}^{\alpha}) \,, \\ &\text{div}_{s} {\boldsymbol{\pi}}= \text{div}_{n} {\boldsymbol {\pi}}= a^{-1/2} (a^{1/2} {\boldsymbol{\pi}}\cdot{\mathbf{d}}^{\alpha}),_{ \alpha}= a^{-1/2} \pi^{\alpha},_{\alpha}\,, \\ &\text{div}_{s} (\theta{\boldsymbol{\pi}}) = \text{div}_{n} (\theta{ \boldsymbol{\pi}}) = a^{-1/2} (\theta\pi^{\alpha},_{\alpha}+ \theta,_{\alpha}\pi^{\alpha}) \,, \\ &\text{div}_{s} {\boldsymbol{\pi}}^{3}= \text{div}_{n} { \boldsymbol{\pi}}^{3} = a^{-1/2} (a^{1/2} {\boldsymbol{\pi}}^{3} \cdot{\mathbf{d}}^{\alpha}),_{\alpha}= a^{-1/2} \pi^{3 \alpha},_{ \alpha}\,, \\ &\text{div}_{s} (\theta_{3} {\boldsymbol{\pi}}^{3}) = \text{div}_{n} ( \theta_{3} {\boldsymbol{\pi}}^{3}) = a^{-1/2} (\theta_{3} \pi^{3 \alpha},_{\alpha}+ \theta_{3},_{\alpha}\pi^{3\alpha}) \,. \end{aligned} $$
(106)

Now, using (8), (9) and (45) it can be shown that for the constrained theory

$$ \begin{aligned} &\text{div}_{s} {\mathbf{v}}= {\mathbf{w}}_{\alpha}\cdot{\mathbf{d}}^{ \alpha}= {\mathbf{L}}{\mathbf{d}}_{\alpha}\cdot{\mathbf{d}}^{ \alpha}= \big[{\mathbf{I}}- \frac{{\mathbf{d}}_{3} \otimes{\mathbf{d}}_{3}}{\phi^{2}} \big] \cdot{\mathbf{D}}\,, \end{aligned} $$
(107)

and that

$$ \begin{aligned} &\frac{\dot{\phi}}{\phi} = \frac{{\mathbf{w}}_{3} \cdot{\mathbf{d}}_{3}}{\phi^{2}} = \frac{{\mathbf{L}}_{3} {\mathbf{d}}_{3} \cdot{\mathbf {d}}_{3}}{\phi^{2}} = \big(\frac{{\mathbf{d}}_{3} \cdot{\mathbf{d}}_{3}}{\phi^{2}} \big) \cdot{\mathbf{D}}\,. \end{aligned} $$
(108)

It then follows that

$$ \begin{aligned} &\text{div}_{s} {\mathbf{v}}= {\mathbf{D}}\cdot{\mathbf{I}}- \frac{\dot{\phi}}{\phi} \,. \end{aligned} $$
(109)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, M.B. An Eulerian Formulation of a Growing Constrained Elastic-Viscoplastic Generalized Membrane. J Elast 154, 493–516 (2023). https://doi.org/10.1007/s10659-022-09919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09919-y

Keywords

Mathematics Subject Classification

Navigation