Skip to main content
Log in

A New Proof That the Number of Linear Elastic Symmetries in Two Dimensions Is Four

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We present an elementary and self-contained proof that there are exactly four symmetry classes of the elasticity tensor in two dimensions: oblique, rectangular, square, and isotropic. In two dimensions, orthogonal transformations are either reflections or rotations. The proof is based on identification of constraints imposed by reflections and rotations on the elasticity tensor, and it simply employs elementary tools from trigonometry, making the proof accessible to a broad audience. For completeness, we identify the sets of transformations (rotations and reflections) for each symmetry class and report the corresponding equations of motions in classical linear elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. There does not appear to be a consensus in the literature for the naming of the symmetry classes in two dimensions. For instance, in [1] the symmetry classes are labeled monoclinic, orthotropic, tetragonal, and isotropic.

  2. For (25a) and (25c), we employ the trigonometric identity \(\sin ^{4}(x) + \cos ^{4}(x) = 1 - \frac{1}{2}\sin ^{2}(2x)\) in combination with \(C_{1111} = C_{2222}\) to obtain (30).

References

  1. Auffray, N., Kolev, B., Olive, M.: Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes. Math. Mech. Solids 22(9), 1847–1865 (2017)

    Article  MathSciNet  Google Scholar 

  2. Blinowski, A., Ostrowska-Maciejewska, J., Rychlewski, J.: Two-dimensional Hooke’s tensors - isotropic decomposition, effective symmetry criteria. Arch. Mech. 48(2), 325–345 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bóna, A., Bucataru, I., Slawinski, M.A.: Material symmetries of elasticity tensors. Q. J. Mech. Appl. Math. 57(4), 583–598 (2004)

    Article  MathSciNet  Google Scholar 

  4. Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49(11), 2471–2492 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. Wiley, New York (2004)

    MATH  Google Scholar 

  6. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81–108 (1996)

    Article  MathSciNet  Google Scholar 

  7. Forte, S., Vianello, M.: A unified approach to invariants of plane elasticity tensors. Meccanica 49(9), 2001–2012 (2014)

    Article  MathSciNet  Google Scholar 

  8. He, Q.-C., Zheng, Q.-S.: On the symmetries of 2D elastic and hyperelastic tensors. J. Elast. 43(3), 203–225 (1996)

    Article  Google Scholar 

  9. Timoshenko, S.: Theory of Elasticity. Engineering Societies Monographs. McGraw-Hill, New York (1934)

    MATH  Google Scholar 

  10. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, London (1996)

    Book  Google Scholar 

  11. Ting, T.C.T.: Generalized Cowin–Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int. J. Solids Struct. 40(25), 7129–7142 (2003)

    Article  MathSciNet  Google Scholar 

  12. Tsai, S.W., Pagano, N.J.: Invariant properties of composite materials. Tech. Rep. AFML-TR-67-349, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio (1968)

  13. Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40(4), 437–454 (2005)

    Article  MathSciNet  Google Scholar 

  14. Vianello, M.: An integrity basis for plane elasticity tensors. Arch. Mech. 49(1), 197–208 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Trageser.

Ethics declarations

Conflicts of Interest/Competing Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Appendices

Appendix A: Equations of Motion in Two-Dimensional Classical Linear Elasticity

In this section, we consider the equation of motion (8) for representative members of each of the four symmetry classes. The corresponding elasticity tensors are given in Theorem 1.

Oblique: There are no restrictions on the elasticity tensor ℂ under oblique symmetry and thus the oblique equation of motion (in component form) is given by (8), which we write out explicitly:

$$\begin{aligned} \begin{aligned} \rho \ddot{u}_{1} ={}& C_{1111} \frac{\partial ^{2} u_{1}}{\partial x^{2}} +2C_{1112} \frac{\partial ^{2} u_{1}}{\partial x \partial y} + C_{1212} \frac{\partial ^{2} u_{1}}{\partial y^{2}} + C_{1112} \frac{\partial ^{2} u_{2}}{\partial x^{2}} \\ &+ \left ( C_{1122} + C_{1212} \right ) \frac{\partial ^{2} u_{2}}{\partial x \partial y} + C_{2212} \frac{\partial ^{2} u_{2}}{\partial y^{2}} + b_{1}, \end{aligned} \end{aligned}$$
(46a)
$$\begin{aligned} \begin{aligned} \rho \ddot{u}_{2} ={}& C_{1112} \frac{\partial ^{2} u_{1}}{\partial x^{2}} + \left ( C_{1122} + C_{1212} \right ) \frac{\partial ^{2} u_{1}}{\partial x \partial y} + C_{2212} \frac{\partial ^{2} u_{1}}{\partial y^{2}} + C_{1212} \frac{\partial ^{2} u_{2}}{\partial x^{2}} \\ &+ 2 C_{2212} \frac{\partial ^{2} u_{2}}{\partial x \partial y} + C_{2222} \frac{\partial ^{2} u_{2}}{\partial y^{2}} + b_{2}. \end{aligned} \end{aligned}$$
(46b)

Rectangular: Imposing the rectangular symmetry restrictions (20) on (46a) and (46b) produces the rectangular equation of motion (in component form):

$$\begin{aligned} \rho \ddot{u}_{1} ={}& C_{1111} \frac{\partial ^{2} u_{1}}{\partial x^{2}} + C_{1212} \frac{\partial ^{2} u_{1}}{\partial y^{2}} + \left ( C_{1122} + C_{1212} \right ) \frac{\partial ^{2} u_{2}}{\partial x \partial y} +b_{1}, \end{aligned}$$
(47a)
$$\begin{aligned} \rho \ddot{u}_{2} ={}& \left ( C_{1122} + C_{1212} \right ) \frac{\partial ^{2} u_{1}}{\partial x \partial y} + C_{1212} \frac{\partial ^{2} u_{2}}{\partial x^{2}} + C_{2222} \frac{\partial ^{2} u_{2}}{\partial y^{2}} + b_{2}. \end{aligned}$$
(47b)

Square: Imposing the square symmetry restrictions (27) on (46a) and (46b) produces the square equation of motion (in component form):

$$\begin{aligned} \rho \ddot{u}_{1} ={}& C_{1111} \frac{\partial ^{2} u_{1}}{\partial x^{2}} + C_{1212} \frac{\partial ^{2} u_{1}}{\partial y^{2}} + \left ( C_{1122} + C_{1212} \right ) \frac{\partial ^{2} u_{2}}{\partial x \partial y} + b_{1}, \end{aligned}$$
(48a)
$$\begin{aligned} \rho \ddot{u}_{2} ={}& \left ( C_{1122} + C_{1212} \right ) \frac{\partial ^{2} u_{1}}{\partial x \partial y} + C_{1212} \frac{\partial ^{2} u_{2}}{\partial x^{2}} + C_{1111} \frac{\partial ^{2} u_{2}}{\partial y^{2}} + b_{2}. \end{aligned}$$
(48b)

Isotropic: Imposing the isotropic symmetry restrictions (31) on (46a) and (46b) produces the isotropic equation of motion (in component form):

$$\begin{aligned} \rho \ddot{u}_{1} ={}& C_{1111} \frac{\partial ^{2} u_{1}}{\partial x^{2}} + \frac{1}{2} \left ( C_{1111} - C_{1122} \right ) \frac{\partial ^{2} u_{1}}{\partial y^{2}} + \frac{1}{2} \left ( C_{1111} + C_{1122} \right ) \frac{\partial ^{2} u_{2}}{\partial x \partial y} + b_{1}, \end{aligned}$$
(49a)
$$\begin{aligned} \rho \ddot{u}_{2} ={}& \frac{1}{2} \left ( C_{1111} + C_{1122} \right ) \frac{\partial ^{2} u_{1}}{\partial x \partial y} + \frac{1}{2} \left ( C_{1111} - C_{1122} \right ) \frac{\partial ^{2} u_{2}}{\partial x^{2}} + C_{1111} \frac{\partial ^{2} u_{2}}{\partial y^{2}} + b_{2}. \end{aligned}$$
(49b)

Appendix B: Linearization of the Components of the Elasticity Tensor Under Reflections and Rotations

In this section, we linearize the expressions of the transformed components of the elasticity tensor in order to identify interesting properties of the two-dimensional elasticity tensor. Under the transformation \(\mathbf{Q} = \mathbf{Ref}(\alpha )\), the components of the elasticity tensor ℂ are (see (11))

$$\begin{aligned} C_{1111}' ={}& \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac { C_{{2222}}}{8}} \right ) \cos ( 8\alpha ) + \left ( {\frac {C_{{1112}}}{2}} -{\frac {C_{{2212}}}{2}} \right ) \sin ( 8\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{2}}-{\frac {C_{ {2222}}}{2}} \right ) \cos ( 4\alpha ) + \left ( C_{{1112}} + C_{{2212}} \right ) \sin ( 4\alpha ) \\ &+ \left ({\frac {3 C_{{ 1111}}}{8}}+{\frac {C_{{1122}}}{4}}+{\frac {C_{{1212}}}{2}}+{\frac {3 C_{{2222}}}{8}}\right ), \\ C_{1112}' ={}& -\left ( {{\frac {C_{{1112}}}{2}} - \frac {C_{{2212}}}{2}} \right ) \cos ( 8 \alpha ) + \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{ {1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ) \sin ( 8\alpha ) \\ &- \left ( { \frac {C_{{1112}}}{2}} + {\frac {C_{{2212}}}{2}} \right ) \cos ( 4\alpha ) + \left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{{2222}}}{4}} \right ) \sin ( 4\alpha ), \\ C_{1122}' ={}& -\left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ) \cos ( 8\alpha ) - \left ( {\frac {C_{{1112}}}{2}} - {\frac {C_{{2212}}}{2}} \right ) \sin ( 8\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{8}}+{\frac {3 C_{{ 1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ), \\ \\ C_{1212}' ={}&-\left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ) \cos ( 8\alpha ) - \left ( {\frac {C_{{1112}}}{2}} - {\frac {C_{{2212}}}{2}} \right ) \sin ( 8\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{ 1122}}}{4}}+{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ), \\ C_{2212}' ={}& \left ( {\frac {C_{{1112}}}{2}}-{\frac {C_{{2212}}}{2}} \right ) \cos ( 8 \alpha ) - \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ) \sin ( 8\alpha ) \\ &- \left ( {{ \frac {C_{{1112}}}{2}} + \frac {C_{{2212}}}{2}} \right ) \cos ( 4\alpha ) + \left ( {\frac {C_{{1111}}}{4}} -{\frac {C_{{2222}}}{4}} \right ) \sin ( 4\alpha ), \\ C_{2222}' ={}& \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac { C_{{2222}}}{8}} \right ) \cos ( 8\alpha ) + \left ( {\frac {C_{{1112}}}{2}} -{\frac {C_{{2212}}}{2}} \right ) \sin ( 8\alpha ) \\ &- \left ( {\frac {C_{ {1111}}}{2}} - {\frac {C_{{2222}}}{2}} \right ) \cos ( 4\alpha ) -\left ( C_{{1112}} + C_{{2212}} \right ) \sin ( 4\alpha ) \\ &+ \left ( {\frac {3 C_{{ 1111}}}{8}}+{\frac {C_{{1122}}}{4}}+{\frac {C_{{1212}}}{2}}+{\frac {3 C_{{2222}}}{8}} \right ). \end{aligned}$$
(50)

Similarly, under the transformation \(\mathbf{Q} = \mathbf{Rot}(\alpha ) \), the components of the elasticity tensor ℂ are

$$\begin{aligned} C_{1111}' ={}& \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac { C_{{2222}}}{8}} \right ) \cos ( 4\alpha ) - \left ( {\frac {C_{ {1112}}}{2}} - {\frac {C_{{2212}}}{2}} \right ) \sin ( 4\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{2}}-{\frac {C_{{2222}}}{2}} \right ) \cos ( 2\alpha ) - \left (C_{{1112}} + C_{{2212}} \right ) \sin ( 2\alpha ) \\ & + \left ( {\frac {3 C_{{1111}}}{8}}+{\frac {C_{{1122}}}{4}}+{\frac {C_{{1212}}}{2}} + {\frac {3 C_{{ 2222}}}{8}}\right ), \\ C_{1112}' ={}& \left ( {\frac {C_{{1112}}}{2}} -{ \frac {C_{{2212}}}{2}} \right ) \cos ( 4 \alpha ) + \left ( {\frac {C _{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ) \sin ( 4\alpha ) \\ &+\left ( {\frac {C_{{1112}}}{2}} + {\frac {C_{{2212}}}{2}} \right ) \cos ( 2\alpha ) + \left ( {\frac {C_{{1111}}}{4}} -{\frac {C_{{2222}}}{4}} \right ) \sin ( 2\alpha ), \\ C_{1122}' ={}& -\left ( {\frac {C_{{1111}}}{8}} -{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} +{\frac {C_{{2222}}}{8}} \right ) \cos ( 4\alpha ) + \left ( {\frac {C_{{1112}}}{2}}-{\frac {C_{{2212}}}{2}} \right ) \sin ( 4\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{8}} +{\frac {3 C_{{ 1122}}}{4}}-{\frac {C_{{1212}}}{2}}+ {\frac {C_{{2222}}}{8}} \right ), \\ \\ C_{1212}' ={}& -\left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ) \cos ( 4\alpha ) + \left ( {\frac {C_{{1112}}}{2}} -{\frac {C_{{2212}}}{2}} \right ) \sin ( 4\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{ 1122}}}{4}}+{\frac {C_{{1212}}}{2}}+{\frac {C_{{2222}}}{8}} \right ), \\ C_{2212}' ={}& -\left ( { {\frac {C_{{1112}}}{2}} - \frac {C_{{2212}}}{2}} \right ) \cos ( 4 \alpha ) - \left ( {\frac { C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{ \frac {C_{{2222}}}{8}} \right ) \sin ( 4\alpha ) \\ &+ \left ( {{\frac {C_{{1112}}}{2}} + \frac {C_{{2212}}}{2}} \right ) \cos ( 2\alpha ) + \left ( {\frac {C_{{1111}}}{4}} -{\frac {C_{{2222}}}{4}} \right ) \sin ( 2\alpha ), \\ C_{2222}' ={}& \left ( {\frac {C_{{1111}}}{8}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}}+{\frac { C_{{2222}}}{8}} \right ) \cos ( 4\alpha ) - \left ( {\frac {C_{ {1112}}}{2}} - {\frac {C_{{2212}}}{2}} \right ) \sin ( 4\alpha ) \\ &- \left ( {\frac {C_{{1111}}}{2}} - {\frac {C_{{2222}}}{2}} \right ) \cos ( 2\alpha ) + \left ( C_{{1112}} + C_{{2212}} \right ) \sin ( 2\alpha ) \\ &+ \left ( {\frac {3 C_{{ 1111}}}{8}}+{\frac {C_{{1122}}}{4}}+{\frac {C_{{1212}}}{2}}+{\frac {3 C_{{2222}}}{8}} \right ). \end{aligned}$$
(51)

One immediate observation from (50) and (51) is that the expressions do not contain sine and cosine of odd multiples of \(\alpha \). This is not entirely unexpected as the transformation (see (11) with \(\mathbf{Q}\) given by (12) or (13)) employs terms of the form \((\cos (2 \alpha ))^{n} (\sin (2 \alpha ))^{4-n}\) in (50) and \((\cos (\alpha ))^{n} (\sin (\alpha ))^{4-n}\) in (51) for \(n \in \left \{ 0,1,2,3,4 \right \}\), which when linearized, produce constant terms and terms of the form \(\cos (2m \alpha )\) and \(\sin (2m \alpha )\) for \(m \in \left \{1,2,3,4 \right \}\). For rotations, this was observed in [12] wherein the so-called parameters of Tsai and Pagano were introduced. Additionally, there are deeper connections between the harmonic decomposition of the elasticity tensor and this linearized form of the transformed components of ℂ under rotations which were explored in [7].

Appendix C: Orthogonal Transformations in Two Dimensions

For the sake of completeness, this section presents a proof that, in two dimensions, orthogonal transformations are either rotations or reflections. The proof presented here is straightforward and we make no claims of originality.

Proposition 1

In two dimensions, orthogonal transformations are either rotations or reflections.

Proof

Let

$$ \mathbf{A} := \left [ \textstyle\begin{array}{c@{\quad}c} a & b \\ c & d \end{array}\displaystyle \right ] $$
(52)

be an orthogonal transformation in two dimensions. Consequently, \(\mathbf{A} \mathbf{A}^{T} = \mathbf{I}\) with \(\mathbf{I}\) the identity transformation, which implies

$$ \begin{aligned} 1 = a^{2} + b^{2}, \, 0 = ac +bd, \text{ and } 1 = c^{2} + d^{2}. \end{aligned} $$
(53)

From (53), we see that the points \((a,b)\) and \((c,d)\) lie on the unit circle and without loss of generality we may introduce angles \(\theta , \phi \in [0,2 \pi )\) such that

$$ \begin{aligned} a = \cos (\theta ), \, b = \sin (\theta ), \, c = \cos ( \phi ), \text{ and } d = \sin (\phi ). \end{aligned} $$
(54)

From (53) and (54), we have

$$ 0 = ac +bd = \cos (\theta ) \cos (\phi ) + \sin (\theta ) \sin (\phi ) = \cos (\theta -\phi ) \Rightarrow \theta -\phi = \frac{\pi}{2} + k \pi , $$
(55)

for some \(k \in \mathbb{Z}\).

If \(k\) is even, then from the periodicity of the sine and cosine functions, as well as the fact that the sine function is simply a quarter period shift of the cosine function, we have

$$ \mathbf{A} = \left [ \textstyle\begin{array}{c@{\quad}c} \cos (\theta ) & \sin (\theta ) \\ \cos ( \theta - \frac{\pi}{2} ) & \sin ( \theta - \frac{\pi}{2} ) \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c@{\quad}c} \cos (\theta ) & \sin (\theta ) \\ \sin ( \theta ) & -\cos ( \theta ) \end{array}\displaystyle \right ]. $$
(56)

From (13), we see that (56) corresponds to a reflection about the line through the origin making an angle of \(\frac{\theta}{2}\) with the \(x\)-axis.

Alternatively, if \(k\) is odd, then from the periodicity of the sine and cosine functions, the fact that the sine function is simply a quarter period shift of the cosine function, and the odd and even properties of the sine and cosine functions, respectively, we have

$$ \mathbf{A} = \left [ \textstyle\begin{array}{c@{\quad}c} \cos (\theta ) & \sin (\theta ) \\ \cos ( \theta + \frac{\pi}{2} ) & \sin ( \theta + \frac{\pi}{2} ) \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c@{\quad}c} \cos (\theta ) & \sin (\theta ) \\ -\sin ( \theta ) & \cos ( \theta ) \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c@{\quad}c} \cos (-\theta ) & -\sin (-\theta ) \\ \sin ( -\theta ) & \cos ( -\theta ) \end{array}\displaystyle \right ]. $$
(57)

From (12), we see that (57) corresponds to a clockwise rotation by an angle \(\theta \) about the origin, or equivalently a counterclockwise rotation by an angle \(-\theta \) about the origin. □

Appendix D: Invariance of the Elasticity Tensor with Respect to \(\mathbf{Ref}(\alpha )\)

This section presents a proof that, under particular conditions on its components, the elasticity tensor ℂ is invariant with respect to a specific reflection transformation.

Lemma 3

Let \(C_{ijkl}\), for \(i,j,k,l \in \left \{1,2 \right \}\), be the components of the elasticity tensor ℂ. If \(C_{1111} = C_{2222}\), \(C_{1112} = -C_{2212}\), and there exists an \(\alpha \in \left ( 0, \frac{\pi}{4} \right )\) such that

$$ C_{1111} - C_{1122} - 2 C_{1212} = 2C_{1112} \left ( \cot (2\alpha ) - \tan (2\alpha ) \right ), $$
(58)

thenis invariant under the transformation \(\mathbf{Ref}(\alpha )\).

Proof

Recall ℂ is invariant under the transformation \(\mathbf{Ref}(\alpha )\) if (11) holds with \(\mathbf{Q} = \mathbf{Ref}(\alpha )\). Conveniently, the components of the elasticity tensor under the transformation \(\mathbf{Ref}(\alpha )\) are presented in (50). Demonstrating \(C_{ijkl}' = C_{ijkl}\) for \(i,j,k,l \in \left \{1,2 \right \}\) in (50) proves the invariance of the elasticity tensor under the transformation \(\mathbf{Ref}(\alpha )\). We start by substituting the assumptions \(C_{2222} = C_{1111}\) and \(C_{2212} = -C_{1112}\) into (50) to obtain

$$\begin{aligned} C_{1111}' ={}& \left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \cos ( 8\alpha ) + C_{{1112}} \sin ( 8\alpha ) + \left ({ \frac {3 C_{{ 1111}}}{4}}+{\frac {C_{{1122}}}{4}}+{\frac {C_{{1212}}}{2}} \right ), \\ C_{1112}' ={}& - C_{{1112}} \cos ( 8 \alpha ) + \left ( { \frac {C_{{1111}}}{4}}-{\frac {C_{ {1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \sin ( 8\alpha ), \\ C_{1122}' ={}& -\left ( {\frac {C_{{1111}}}{4}}-{ \frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \cos ( 8\alpha ) - C_{{1112}} \sin ( 8\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{4}}+{ \frac {3 C_{{ 1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ), \\ C_{1212}' ={}&-\left ( {\frac {C_{{1111}}}{4}}-{ \frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \cos ( 8\alpha ) - C_{{1112}} \sin ( 8\alpha ) \\ &+ \left ( {\frac {C_{{1111}}}{4}}-{ \frac {C_{{ 1122}}}{4}}+{\frac {C_{{1212}}}{2}} \right ), \\ C_{2212}' ={}& C_{{1112}} \cos ( 8 \alpha ) - \left ( { \frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \sin ( 8\alpha ), \\ C_{2222}' ={}& \left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \cos ( 8\alpha ) + C_{{1112}} \sin ( 8\alpha ) + \left ( { \frac {3 C_{{ 1111}}}{4}}+{\frac {C_{{1122}}}{4}}+{\frac {C_{{1212}}}{2}} \right ). \end{aligned}$$
(59)

Next, we subtract \(C_{ijkl}\) from both sides of each equation, where the indices correspond to the indices of \(C_{ijkl}'\) in each equation. This is followed by combining like terms to find

$$ \begin{aligned} C_{1111}' -C_{1111} ={}& -\left ( { \frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \left (1-\cos ( 8\alpha ) \right ) + C_{{1112}} \sin ( 8\alpha ), \\ C_{1112}' -C_{1112}={}& - C_{{1112}} \left ( 1+\cos ( 8 \alpha ) \right ) + \left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{ {1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \sin ( 8\alpha ), \\ C_{1122}' -C_{1122}={}& \left ( {\frac {C_{{1111}}}{4}}-{ \frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \left (1- \cos ( 8 \alpha ) \right ) - C_{{1112}} \sin ( 8\alpha ), \\ C_{1212}' -C_{1212}={}&\left ( {\frac {C_{{1111}}}{4}}-{ \frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \left (1 - \cos ( 8 \alpha ) \right ) - C_{{1112}} \sin ( 8\alpha ), \\ C_{2212}' -C_{2212}={}& C_{{1112}} \left (1 + \cos ( 8 \alpha ) \right ) - \left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \sin ( 8\alpha ), \\ C_{2222}' -C_{2222}={}& -\left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \left (1 - \cos ( 8\alpha ) \right ) + C_{{1112}} \sin ( 8\alpha ). \end{aligned} $$
(60)

Note that in the equations for \(C_{2212}'\) and \(C_{2222}'\) in (60), we employed the assumptions \(C_{2212} = -C_{1112}\) and \(C_{2222} = C_{1111}\), respectively. To complete the proof, we demonstrate the right-hand side of each equation in (60) is null. Up to a change in sign, there are only two unique expressions on the right-hand sides of the equations in (60):

$$ \begin{aligned} &\left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \left (1- \cos ( 8 \alpha ) \right ) - C_{{1112}} \sin ( 8\alpha ), \\ &C_{{1112}} \left ( 1+\cos ( 8 \alpha )\right ) - \left ( { \frac {C_{{1111}}}{4}}-{\frac {C_{ {1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) \sin ( 8\alpha ). \end{aligned} $$
(61)

Based on the final assumption (58), we substitute \(\left ( {\frac {C_{{1111}}}{4}}-{\frac {C_{{1122}}}{4}}-{\frac {C_{{1212}}}{2}} \right ) = \frac{1}{2} C_{1112} ( \cot (2\alpha ) - \tan (2\alpha ) )\) into (61) to obtain

$$ \begin{aligned} &\left ( \frac{1}{2} (\cot (2 \alpha ) - \tan (2 \alpha )) (1-\cos (8\alpha )) - \sin (8 \alpha ) \right ) C_{1112}, \\ &\left (1+\cos (8\alpha ) - \frac{1}{2} ( \cot (2\alpha )-\tan (2 \alpha ))\sin (8\alpha ) \right ) C_{1112}. \end{aligned} $$
(62)

Employing the trigonometric identities \(\cot (2\alpha )-\tan (2\alpha ) = 2 \cot (4\alpha ), 1-\cos (8 \alpha ) = 2 \sin ^{2}(4\alpha ), 1+\cos (8\alpha ) = 2 \cos ^{2}(4 \alpha )\), and \(\sin (8\alpha ) = 2 \sin (4 \alpha ) \cos (4 \alpha )\), we may transform (62) into

$$ \begin{aligned} &\left ( 2 \cot (4\alpha ) \sin ^{2}(4\alpha ) -2 \sin (4 \alpha ) \cos (4\alpha )\right )C_{1112}=0, \\ &\left (2 \cos ^{2}(4\alpha ) - 2 \cot (4 \alpha ) \sin (4 \alpha ) \cos (4\alpha ) \right ) C_{1112} = 0. \end{aligned} $$
(63)

The equalities in (63) follow by recalling the identity \(\cot (4\alpha ) = \frac{\cos (4 \alpha )}{\sin (4\alpha )}\). Consequently, the right-hand sides of (60) are null and thus \(C_{ijkl}' = C_{ijkl}\) for \(i,j,k,l \in \left \{1,2 \right \}\). We conclude ℂ is invariant under the transformation \(\mathbf{Ref}(\alpha )\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trageser, J., Seleson, P. A New Proof That the Number of Linear Elastic Symmetries in Two Dimensions Is Four. J Elast 150, 221–239 (2022). https://doi.org/10.1007/s10659-022-09902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09902-7

Keywords

Mathematics Subject Classification

Navigation