Skip to main content

Advertisement

Log in

Violation of Ericksen Inequalities in Lyotropic Chromonic Liquid Crystals

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

By analyzing elastic theory for nematic liquid crystals, we distinguish three regimes of elastic constants. In one regime, the Ericksen inequalities are satisfied, and the ground state of the director field is uniform. In a second regime, certain necessary inequalities are violated, and the free energy is thermodynamically unstable. Between those possibilities, there is an intermediate regime, where the Ericksen inequalities are violated but the system is still stable. Remarkably, lyotropic chromonic liquid crystals are in the intermediate regime. We investigate the nonuniform structure of the director field in that regime, show that it depends sensitively on system geometry, and discuss the implications for lyotropic chromonic liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883 (1933). https://doi.org/10.1039/tf9332900883

    Article  MATH  Google Scholar 

  2. Frank, F.C.: I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19 (1958). https://doi.org/10.1039/df9582500019

    Article  Google Scholar 

  3. Nehring, J., Saupe, A.: On the elastic theory of uniaxial liquid crystals. J. Chem. Phys. 54, 337 (1971). https://doi.org/10.1063/1.1674612

    Article  Google Scholar 

  4. Nehring, J., Saupe, A.: Calculation of the elastic constants of nematic liquid crystals. J. Chem. Phys. 56, 5527 (1972). https://doi.org/10.1063/1.1677071

    Article  Google Scholar 

  5. Ericksen, J.L.: Inequalities in liquid crystal theory. Phys. Fluids 9, 1205 (1966). https://doi.org/10.1063/1.1761821

    Article  Google Scholar 

  6. Selinger, J.V.: Interpretation of saddle-splay and the Oseen-Frank free energy in liquid crystals. Liq. Cryst. Rev. 6, 129–142 (2018). https://doi.org/10.1080/21680396.2019.1581103

    Article  Google Scholar 

  7. Machon, T., Alexander, G.P.: Umbilic lines in orientational order. Phys. Rev. X 6, 011033 (2016). https://doi.org/10.1103/PhysRevX.6.011033

    Article  Google Scholar 

  8. Virga, E.G.: Uniform distortions and generalized elasticity of liquid crystals. Phys. Rev. E 100, 052701 (2019). https://doi.org/10.1103/PhysRevE.100.052701

    Article  Google Scholar 

  9. Sadoc, J.F., Mosseri, R., Selinger, J.V.: Liquid crystal director fields in three-dimensional non-Euclidean geometries. New J. Phys. 22, 093036 (2020). https://doi.org/10.1088/1367-2630/abaf6c

    Article  MathSciNet  Google Scholar 

  10. Pollard, J., Alexander, G.P.: Intrinsic geometry and director reconstruction for three-dimensional liquid crystals. New J. Phys. 23, 063006 (2021). https://doi.org/10.1088/1367-2630/abfdf4

    Article  MathSciNet  Google Scholar 

  11. da Silva, L.C.B., Efrati, E.: Moving frames and compatibility conditions for three-dimensional director fields. New J. Phys. 23, 063016 (2021). https://doi.org/10.1088/1367-2630/abfdf6

    Article  MathSciNet  Google Scholar 

  12. Nayani, K., Chang, R., Fu, J., Ellis, P.W., Fernandez-Nieves, A., Park, J.O., Srinivasarao, M.: Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders. Nat. Commun. 6, 8067 (2015). https://doi.org/10.1038/ncomms9067

    Article  Google Scholar 

  13. Davidson, Z.S., Kang, L., Jeong, J., Still, T., Collings, P.J., Lubensky, T.C., Yodh, A.G.: Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. Phys. Rev. E 91, 050501 (2015). https://doi.org/10.1103/PhysRevE.91.050501

    Article  Google Scholar 

  14. Fu, J., Nayani, K., Park, J.O., Srinivasarao, M.: Spontaneous emergence of twist and the formation of a monodomain in lyotropic chromonic liquid crystals confined to capillaries. NPG Asia Mater. 9, 393 (2017). https://doi.org/10.1038/am.2017.84

    Article  Google Scholar 

  15. Javadi, A., Eun, J., Jeong, J.: Cylindrical nematic liquid crystal shell: effect of saddle-splay elasticity. Soft Matter 14, 9005 (2018). https://doi.org/10.1039/C8SM01829D

    Article  Google Scholar 

  16. Paparini, S.: Mathematical Models for Chromonic Liquid Crystals. PhD thesis, Università degli Studi di Pavia (2021) http://hdl.handle.net/10281/362343

  17. Paparini, S., Virga, E.G.: Stability Against the Odds: The Case of Chromonic Liquid Crystals (2022). https://doi.org/10.48550/arxiv.2203.12576

    Book  MATH  Google Scholar 

  18. Burylov, S.V.: Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity. J. Exp. Theor. Phys. 85, 873–886 (1997). https://doi.org/10.1134/1.558425

    Article  Google Scholar 

  19. Dozov, I.: On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys. Lett. 56, 247–253 (2001). https://doi.org/10.1209/epl/i2001-00513-x

    Article  Google Scholar 

  20. Shamid, S.M., Dhakal, S., Selinger, J.V.: Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals. Phys. Rev. E 87, 052503 (2013). https://doi.org/10.1103/PhysRevE.87.052503

    Article  Google Scholar 

  21. Rosseto, M.P., Selinger, J.V.: Theory of the splay nematic phase: single vs. double splay. Phys. Rev. E 101, 052707 (2020). https://doi.org/10.1103/PhysRevE.101.052707

    Article  Google Scholar 

  22. Selinger, J.V.: Director deformations, geometric frustration, and modulated phases in liquid crystals. Annu. Rev. Condens. Matter Phys. 13, 49–71 (2022). https://doi.org/10.1146/annurev-conmatphys-031620-105712

    Article  Google Scholar 

  23. Rosseto, M.P., Selinger, J.V.: Modulated phases of nematic liquid crystals induced by tetrahedral order (2021). 2112.15218

  24. Meiri, S., Efrati, E.: Cumulative geometric frustration in physical assemblies. Phys. Rev. E 104, 054601 (2021). https://doi.org/10.1103/PhysRevE.104.054601

    Article  MathSciNet  Google Scholar 

  25. Nych, A., Fukuda, J-i., Ognysta, U., Žumer, S., Muševič, I.: Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nat. Phys. 13, 1215 (2017). https://doi.org/10.1038/nphys4245

    Article  Google Scholar 

  26. Duzgun, A., Selinger, J.V., Saxena, A.: Comparing skyrmions and merons in chiral liquid crystals and magnets. Phys. Rev. E 97, 062706 (2018). https://doi.org/10.1103/PhysRevE.97.062706

    Article  Google Scholar 

  27. Ettinger, S., Dietrich, C.F., Mishra, C.K., Miksch, C., Beller, D.A., Collings, P.J., Yodh, A.G.: Rods in a lyotropic chromonic liquid crystal: emergence of chirality, symmetry-breaking alignment, and caged angular diffusion. Soft Matter, 20–23 (2022). https://doi.org/10.1039/D1SM01209F

Download references

Acknowledgements

This work was supported by National Science Foundation Grant DMR-1409658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan V. Selinger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, C., Selinger, J.V. Violation of Ericksen Inequalities in Lyotropic Chromonic Liquid Crystals. J Elast 153, 599–612 (2023). https://doi.org/10.1007/s10659-022-09899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09899-z

Keywords

Mathematics Subject Classification

Navigation