Skip to main content
Log in

Potential Method in the Coupled Theory of Viscoelasticity of Porous Materials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper concerns with the coupled linear theory of viscoelasticity for porous materials. In this theory the coupled phenomenon of the concepts of Darcy’s law and the volume fraction is considered. The basic internal and external boundary value problems (BVPs) of steady vibrations are investigated. Indeed, the fundamental solution of the system of steady vibration equations is constructed explicitly by means of elementary functions and its basic properties are presented. Green’s identities are obtained and the uniqueness theorems for the regular (classical) solutions of the BVPs of steady vibrations are proved. The surface and volume potentials are constructed and the basic properties of these potentials are given. Finally, the existence theorems for classical solutions of the BVPs of steady vibrations are proved by means of the potential method and the theory of singular integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abousleiman, Y., Cheng, A.H.-D., Jiang, C., Roegiers, J.-C.: Poroviscoelastic analysis of borehole and cylinder problems. Acta Mech. 109, 199–219 (1996).

    Article  MATH  Google Scholar 

  2. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

    Article  ADS  MATH  Google Scholar 

  3. Biot, M.A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27, 459–467 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  4. Bociu, L., Guidoboni, G., Sacco, R., Verri, M.: On the role of compressibility in poroviscoelastic models. Math. Biosci. Eng. 16, 6167–6208 (2019).

    Article  MathSciNet  Google Scholar 

  5. Booker, J.R., Savvidou, C.: Consolidation around a spherical heat source. Int. J. Solids Struct. 20, 1079–1090 (1984).

    Article  Google Scholar 

  6. Budday, S., Sommer, G., Holzapfel, G.A., Steinmann, P., Kuhl, E.: Viscoelastic parameter identification of human brain tissue. J. Mech. Behav. Biomed. Mater. 74, 463–476 (2017).

    Article  Google Scholar 

  7. Bukur, A.: Rayleigh surface waves problem in linear thermoviscoelasticity with voids. Acta Mech. 227, 1199–1212 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bukur, A.: Spatial behavior in dynamical thermoviscoelasticity backward in time for porous media. J. Therm. Stresses 39, 1523–1538 (2016).

    Article  Google Scholar 

  9. Cheng, A.H.-D.: Poroelasticity. Springer, Switzerland (2016).

    Book  MATH  Google Scholar 

  10. Chirita, S., Ciarletta, M., Tibullo, V.: Rayleigh surface waves on a Kelvin-Voigt viscoelastic half-space. J. Elast. 115, 61–76 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. Chirita, S., Danescu, A.: Surface waves problem in a thermoviscoelastic porous half-space. Wave Motion 54, 100–114 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarletta, M., Ieşan, D.: Non-classical Elastic Solids. Longman Scientific and Technical, John Wiley & Sons, Inc., New York, NY, Harlow, Essex, UK (1993).

    MATH  Google Scholar 

  13. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983).

    Article  MATH  Google Scholar 

  14. D’Apice, C., Chirita, S.: Plane harmonic waves in the theory of thermoviscoelastic materials with voids. J. Therm. Stresses 39, 142–155 (2016).

    Article  Google Scholar 

  15. Derski, W., Kowalski, S.: Equations of linear thermoconsolidation. Arch. Mech. 31, 303–316 (1979).

    MATH  Google Scholar 

  16. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissuesed, 2nd edn. Springer, New York (1993).

    Book  Google Scholar 

  17. Ieşan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986).

    Article  Google Scholar 

  18. Ieşan, D.: Thermoelastic Models of Continua. Springer, Berlin (2004).

    Book  MATH  Google Scholar 

  19. Ieşan, D.: On a theory of thermoviscoelastic materials with voids. J. Elast. 104, 369–384 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  20. Ieşan, D.: On the nonlinear theory of thermoviscoelastic materials with voids. J. Elast. 128, 1–16 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaiani, G.: Hierarchical models for viscoelastic Kelvin-Voigt prismatic shells with voids. Bull. TICMI 21, 33–44 (2017).

    MathSciNet  MATH  Google Scholar 

  22. Kumar, R., Kumar, R.: Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media. Meccanica 48, 2173–2188 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  23. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam, New York, Oxford (1979).

    Google Scholar 

  24. Lakes, R.S.: Viscoelastic Materials. Cambridge University Press, New York (2009).

    Book  MATH  Google Scholar 

  25. Liu, Z.: Multiphysics in Porous Materials. Springer, Switzerland (2018).

    Book  Google Scholar 

  26. Liu, X., Greenhalgh, S., Zhou, B., Greenhalgh, M.: Effective Biot theory and its generalization to poroviscoelastic models. Geophys. J. Int. 212, 1255–1273 (2018).

    Article  ADS  Google Scholar 

  27. Mehrabian, A., Abousleiman, Y.: General solutions to poroviscoelastic model of hydrocephalic human brain tissue. J. Theor. Biol. 291, 105–118 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  28. Mikelashvili, M.: Quasi-static problems in the coupled linear theory of elasticity for porous materials. Acta Mech. 231, 877–897 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  29. Mikelashvili, M.: Quasi-static problems in the coupled linear theory of thermoporoelasticity. J. Therm. Stresses 44, 236–259 (2020).

    Article  MATH  Google Scholar 

  30. Nguyen, T.S., Selvadurai, A.P.S.: Coupled thermal-mechanical-hydrological behaviour of sparsely fractured rock: implications for nuclear fuel waste disposal. Int. J. Rock Mech. Min. Sci. 32, 465–479 (1995).

    Article  Google Scholar 

  31. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  32. Pamplona, P.X., Rivera, J.E.M., Quintanilla, R.: On uniqueness and analyticity in thermoviscoelastic solids with voids. J. Appl. Anal. Comput. 1, 251–266 (2011).

    MathSciNet  MATH  Google Scholar 

  33. Park, J., Lakes, R.S.: Biomaterials. An Introduction, 3rd edn. Springer, Berlin (2007).

    Google Scholar 

  34. Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985).

    Article  MATH  Google Scholar 

  35. Schanz, M., Cheng, A.H.-D.: Dynamic analysis of a one-dimensional poroviscoelastic column. J. Appl. Mech. 68, 192–198 (2001).

    Article  ADS  MATH  Google Scholar 

  36. Schiffman, R.L.: A thermoelastic theory of consolidation. In: Cremers, C.J., Kreith, F., Clark, J.A. (eds.) Environmental and Geophysical Heat Transfer, pp. 78–84. ASME, New York (1971).

    Google Scholar 

  37. Selvadurai, A.P.S., Suvorov, A.: Thermo-Poroelasticity and Geomechanics. Cambridge University Press, Cambridge (2017).

    Google Scholar 

  38. Stephanson, O., Hudson, J.A., Jing, L. (eds.): Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems: Fundamentals, Modelling, Experiments and Applications Elsevier, Amsterdam, Boston, Heidelberg, London (2004).

    Google Scholar 

  39. Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008).

    MATH  Google Scholar 

  40. Straughan, B.: Convection with Local Thermal Non-equilibrium and Microfluidic Effects. Advances in Mechanics and Mathematics, vol. 32. Springer, New York (2015).

    MATH  Google Scholar 

  41. Straughan, B.: Mathematical Aspects of Multi-Porosity Continua. Advances in Mechanics and Mathematics, vol. 38. Springer, Switzerland (2017).

    Book  MATH  Google Scholar 

  42. Suh, J.K., Bai, S.: Finite element formulation of biphasic poroviscoelastic model for articular cartilage. J. Biomech. Eng. 120, 198–201 (1998).

    Article  Google Scholar 

  43. Suvorov, A.P., Selvadurai, A.P.S.: Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains. J. Mech. Phys. Solids 58, 1461–1473 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Svanadze, M.: Boundary integral equations method in the coupled theory of thermoelasticity for porous materials. In: Proceedings of ASME, IMECE2019, Volume 9: Mechanics of Solids, Structures, and Fluids, V009T11A033, November 11-14, 2019. https://doi.org/10.1115/IMECE2019-10367

  45. Svanadze, M.: Potential method in the coupled linear theory of porous elastic solids. Math. Mech. Solids 25, 768–790 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  46. Svanadze, M.M.: Potential method in the linear theory of viscoelastic materials with voids. J. Elast. 114, 101–126 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  47. Svanadze, M.M.: On the solutions of equations of the linear thermoviscoelasticity theory for Kelvin-Voigt materials with voids. J. Therm. Stresses 37, 253–269 (2014).

    Article  Google Scholar 

  48. Svanadze, M.M.: Potential method in the theory of thermoviscoelasticity for materials with voids. J. Therm. Stresses 37, 905–927 (2014).

    Article  Google Scholar 

  49. Svanadze, M.M.: Plane waves and problems of steady vibrations in the theory of viscoelasticity for Kelvin-Voigt materials with double porosity. Arch. Mech. 68, 441–458 (2016).

    MathSciNet  MATH  Google Scholar 

  50. Vgenopoulou, I., Beskos, D.E.: Dynamic behavior of saturated poroviscoelastic media. Acta Mech. 95, 185–195 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [Project # FR-19-4790].

The author is very grateful to the anonymous reviewers for their valuable comments concerning this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia M. Svanadze.

Ethics declarations

Conflict of Interest

The author declare that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svanadze, M.M. Potential Method in the Coupled Theory of Viscoelasticity of Porous Materials. J Elast 144, 119–140 (2021). https://doi.org/10.1007/s10659-021-09830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09830-y

Keywords

Mathematics Subject Classification (2010)

Navigation