Skip to main content
Log in

Stochastic Approach to the Solution of Boussinesq-Like Problems in Discrete Media

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A vertical surface load acting on a half-space made of discrete and elastic particles is supported by a network of force chains that changes with the specific realization of the packing. These force chains can be transformed into equivalent stress fields, but the obtained values are usually different from those predicted by the unique solution of the corresponding boundary value problem. In this research the relationship between discrete and continuum approaches to Boussinesq-like problems is explored in the light of classical statistical mechanics. In the principal directions of the stress established by the continuum-based approach, the probability distribution functions of the extensive normal and shear stresses of particles are anticipated to be exponential and Laplace distributions, respectively. The extensive stress is the product of the volumetric average of the stress field within a region by the volume of that region. The parameters locating and scaling these probability distribution functions (PDFs) are such that the expected values of the extensive stresses match the solution to the corresponding boundary value problem: zero extensive shear stress and extensive normal stresses equal to the principal ones. The continuum-based approach is still needed to know the expected values, but this research article presents a powerful method for quantifying their expected variability. The theory has been validated through massive numerical simulation with the discrete element method. These results could be of interest in highly fragmented, faulted or heterogeneous media or on small length scales (with particular applications for laboratory testing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In the case of indirect measurements, \(Y=f_{\left ( X_{1}, X_{2}, \ldots \right )}\), the margins of error were computed as \(\Delta Y = \sqrt{\sum _{i}{\left \vert \frac{\partial Y}{ \partial X_{i}} \right \vert ^{2} \Delta X_{i}^{2}}} \).

References

  1. Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22(3), 165–177 (1996). https://doi.org/10.1016/0167-6636(95)00044-5

    Article  Google Scholar 

  2. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics, vol. 76 (1975). STIA

    MATH  Google Scholar 

  3. Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse, vol. 4. Gauthier-Villars, Paris (1885)

  4. Coppersmith, S.N., Liu, C.-h., Majumdar, S., Narayan, O., Witten, T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673–4685 (1996). https://doi.org/10.1103/PhysRevE.53.4673

    Article  ADS  Google Scholar 

  5. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  6. Drescher, A., de Josselin de Jong, G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20(5), 337–340 (1972). https://doi.org/10.1016/0022-5096(72)90029-4

    Article  ADS  Google Scholar 

  7. Edwards, S.: The full canonical ensemble of a granular system. Phys. A, Stat. Mech. Appl. 353, 114–118 (2005). https://doi.org/10.1016/j.physa.2005.01.045

    Article  Google Scholar 

  8. Edwards, S., Oakeshott, R.: Theory of powders. Phys. A, Stat. Mech. Appl. 157(3), 1080–1090 (1989). https://doi.org/10.1016/0378-4371(89)90034-4

    Article  MathSciNet  Google Scholar 

  9. Edwards, S., Grinev, D., Brujić, J.: Fundamental problems in statistical physics of jammed packings. Phys. A, Stat. Mech. Appl. 330(1), 61–76 (2003). https://doi.org/10.1016/j.physa.2003.08.006

    Article  MathSciNet  MATH  Google Scholar 

  10. Flamant, A.: Sur la répartition des pressions dans un solide rectangulaire chargé transversalement. C. R. Acad. Sci. Paris, Ser. I 114, 1465–1468 (1892)

    MATH  Google Scholar 

  11. Gardiner, B., Tordesillas, A.: Micromechanics of shear bands. Int. J. Solids Struct. 41(21), 5885–5901 (2004). https://doi.org/10.1016/j.ijsolstr.2004.05.051

    Article  MATH  Google Scholar 

  12. Henkes, S., Chakraborty, B.: Statistical mechanics framework for static granular matter. Phys. Rev. E 79, 061301 (2009). https://doi.org/10.1103/PhysRevE.79.061301

    Article  ADS  MathSciNet  Google Scholar 

  13. Henkes, S., O’Hern, C.S., Chakraborty, B.: Entropy and temperature of a static granular assembly: an ab initio approach. Phys. Rev. Lett. 99, 038002 (2007). https://doi.org/10.1103/PhysRevLett.99.038002

    Article  ADS  Google Scholar 

  14. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  15. Lade, P.V.: Overview of constitutive models for soils. In: Soil Constitutive Models: Evaluation, Selection, and Calibration, pp. 1–34 (2005)

    Google Scholar 

  16. Liu, C.-h., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.: Force fluctuations in bead packs. Science 269(5223), 513–515 (1995). https://doi.org/10.1126/science.269.5223.513

    Article  ADS  Google Scholar 

  17. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005). https://doi.org/10.1038/nature03805

    Article  ADS  Google Scholar 

  18. Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57, 3164–3169 (1998). https://doi.org/10.1103/PhysRevE.57.3164

    Article  ADS  Google Scholar 

  19. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Berlin (2013)

    Google Scholar 

  20. Nicot, F., Hadda, N., Guessasma, M., Fortin, J., Millet, O.: On the definition of the stress tensor in granular media. Int. J. Solids Struct. 50(14), 2508–2517 (2013). https://doi.org/10.1016/j.ijsolstr.2013.04.001

    Article  Google Scholar 

  21. Pathria, R., Beale, P.: Statistical Mechanics. Elsevier, Amsterdam (1996)

    MATH  Google Scholar 

  22. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005). https://doi.org/10.1103/PhysRevE.72.041307

    Article  ADS  Google Scholar 

  23. Podio-Guidugli, P., Favata, A.: Elasticity for Geotechnicians. A Modern Exposition of Kelvin. Boussinesq, Flamant, Cerruti, Melan, and Mindlin Problems, vol. 204 (2014). https://doi.org/10.1007/978-3-319-01258-2

    Book  MATH  Google Scholar 

  24. Poulos, H., Davis, E.: Elastic Solutions for Soil and Rock Mechanics. Series in Soil Engineering. Wiley, New York (1973)

    Google Scholar 

  25. Radjai, F.: Modeling force transmission in granular materials. C. R. Phys. 16(1), 3–9 (2015). https://doi.org/10.1016/j.crhy.2015.01.003

    Article  ADS  Google Scholar 

  26. Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274–277 (1996). https://doi.org/10.1103/PhysRevLett.77.274

    Article  ADS  Google Scholar 

  27. Radjai, F., Roux, S., Moreau, J.J.: Contact forces in a granular packing. Chaos, Interdiscip. J. Nonlinear Sci. 9(3), 544–550 (1999). https://doi.org/10.1063/1.166428

    Article  MATH  Google Scholar 

  28. Sibille, L., Froiio, F.: A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granul. Matter 9(3), 183 (2007). https://doi.org/10.1007/s10035-006-0032-0

    Article  Google Scholar 

  29. Šmilauer, V., et al.: Reference manual. In: Yade Documentation, 2nd edn. (2015). https://doi.org/10.5281/zenodo.34045. The Yade Project. http://yade-dem.org/doc/

    Chapter  Google Scholar 

  30. Sun, Q., Jin, F., Wang, G., Song, S., Zhang, G.: On granular elasticity. Sci. Rep. 5, 9652 (2015). https://doi.org/10.1038/srep09652

    Article  ADS  Google Scholar 

  31. Tejada, I.G.: Ensemble theory for slightly deformable granular matter. Eur. Phys. J. E 37(9), 81 (2014). https://doi.org/10.1140/epje/i2014-14081-6

    Article  Google Scholar 

  32. Tejada, I.G.: Stochastic modeling of stress fields in geotechnical problems with discrete media. In: Sigursteinsson, H., Erlingsson, S., Bessason, B. (eds.) XVII European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavík, Iceland (2019). https://doi.org/10.32075/17ECSMGE-2019-1081

    Chapter  Google Scholar 

  33. Tejada, I.G.: Stochastic solution of geotechnical problems in truly discrete media. In: nate, E.O., Wriggers, P., Zohdi, T., Bischoff, M., Owen, D. (eds.) VI International Conference on Particle-Based Methods. Fundamentals and Applications PARTICLES 2019, pp. 412–422 (2019)

    Google Scholar 

  34. Timoshenko, S., Goodier, J.: Theory of Elasticity. McGraw-Hill Classic Textbook Reissue Series. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  35. Tordesillas, A., Walker, D.M., Andò, E., Viggiani, G.: Revisiting localized deformation in sand with complex systems. Proc. R. Soc. A, Math. Phys. Eng. Sci. 469(2152), 20120606 (2013). https://doi.org/10.1098/rspa.2012.0606

    Article  ADS  Google Scholar 

  36. Verruijt, A., Van Baars, S.: Soil Mechanics. VSSD, Delft (2007)

    Google Scholar 

  37. Vesic, A.B.: Bearing capacity of deep foundations in sand. Highw. Res. Rec. 1(39) (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio G. Tejada.

Ethics declarations

Compliance with Ethical Standards

Conflict of Interest: The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G. Tejada, I. Stochastic Approach to the Solution of Boussinesq-Like Problems in Discrete Media. J Elast 141, 301–319 (2020). https://doi.org/10.1007/s10659-020-09785-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09785-6

Keywords

Mathematics Subject Classification

Navigation