Skip to main content
Log in

A Nanoscale Hole of Arbitrary Shape with Surface Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper, we study the plane deformation of an arbitrarily-shaped nanoscale hole subjected to a uniform mechanical load at the infinity. Stress boundary condition along the hole surface is constructed by incorporating the deformation-dependent surface elasticity. The solution is given via the complex variable techniques, including the conformal mapping and series expansion methods. To verify the present formulation, we compare our results for the elliptical holes with those from the literature and observe good agreement between the two sets of results. Then we present numerical examples for four shapes of holes (ellipse, square, pentagon and triangle) with varying sizes to investigate the stress field with surface elasticity. The first aspect we are interested in is what factors can affect the stress field. Our results show that for nanoscale holes with surface elasticity, the stress field can be greatly influenced by the hole size and the hole shape. Specifically, when the hole size decreases, the hoop stress usually decreases, while the normal and shear stresses always increase. However, the hole size hardly influences the stress distribution pattern, which is, in fact, determined by the hole shape. In addition, the hole shape strongly influences the stress magnitude. Another aspect concerned is the positions of the maximum stresses. The results show that for the most cases, the stresses obtain their maximums at a certain corner of the shapes. However, for some shapes, there might be certain stresses that attain their maximums nearby, not at, the corner of the shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  3. Gurtin, M.E., Weissmuller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)

    Article  ADS  Google Scholar 

  4. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. A 453(1959), 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cammarata, R.C.: Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Eng. A 237(2), 180–184 (1997)

    Article  Google Scholar 

  6. Ru, C.Q.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China 53(3), 536–544 (2010)

    MathSciNet  Google Scholar 

  7. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    Article  ADS  Google Scholar 

  8. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535 (2003)

    Article  ADS  Google Scholar 

  9. Duan, H.L., Wang, J., Huang, Z.P., Luo, Z.Y.: Stress concentration tensors of inhomogeneities with interface effects. Mech. Mater. 37(7), 723–736 (2005)

    Article  Google Scholar 

  10. Sharma, P., Wheeler, L.T.: Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J. Appl. Mech. 74(3), 447–454 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lim, C.W., Li, Z.R., He, L.H.: Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. Int. J. Solids Struct. 17(43), 5055–5065 (2006)

    Article  MATH  Google Scholar 

  12. Wang, G.F., Wang, T.J.: Deformation around a nanosized elliptical hole with surface effect. Appl. Phys. Lett. 89, 161901 (2006)

    Article  ADS  Google Scholar 

  13. Li, Z.R., Lim, C.W., He, L.H.: Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress. Eur. J. Mech. A, Solids 25(2), 260–270 (2006)

    Article  ADS  MATH  Google Scholar 

  14. Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. J. Appl. Mech. 74(3), 268–574 (2007)

    Article  MATH  Google Scholar 

  15. Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44(24), 7988–8005 (2007)

    Article  MATH  Google Scholar 

  16. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56(6), 2298–2327 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ou, Z.Y., Wang, G.F., Wang, T.J.: An analytical solution for the elastic fields near spheroidal nano-inclusions. Acta Mech. Sin. 25(6), 821–830 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, S., Dai, M., Ru, C.Q., Gao, C.F.: Stress field around an arbitrarily shaped nanosized hole with surface tension. Acta Mech. 225(12), 3453–3462 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dai, M., Gao, C.F., Ru, C.Q.: Surface tension-induced stress concentration around a nanosized hole of arbitrary shape in an elastic half-plane. Meccanica 49(12), 2847–2859 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, H.B., Dai, M., Gao, C.F.: Stress field in a porous material containing periodic arbitrarily-shaped holes with surface tension. Math. Mech. Solids 23(1), 120–130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, L., Wu, Y.M., Huang, Z.P., Wang, J.X.: Interface effect on the effective bulk modulus of a particle-reinforced composite. Acta Mech. Sin. 20(6), 676–679 (2004)

    Article  ADS  Google Scholar 

  22. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dai, M., Schiavone, P., Gao, C.F.: Determination of effective thermal expansion coefficients of unidirectional fibrous nanocomposites. Z. Angew. Math. Phys. 67, 110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dai, M., Schiavone, P., Gao, C.F.: Prediction of the stress field and effective shear modulus of composites containing periodic inclusions incorporating interface effects in anti-plane shear. J. Elast. 125(2), 217–230 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fan, T., Yang, L.H.: Effective Young’s modulus of nanoporous materials with cuboid unit cells. Acta Mech. 228(1), 21–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim, C.I., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. J. Appl. Mech. 77(2), 021011 (2009)

    Article  Google Scholar 

  27. Kim, C.I., Schiavone, P., Ru, C.Q.: Analysis of plane-strain crack problems (mode-I & mode-II) in the presence of surface elasticity. J. Elast. 104(1–2), 397–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, X.: A mode III arc-shaped crack with surface elasticity. Z. Angew. Math. Phys. 66(4), 1987–2000 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X., Schiavone, P.: Interaction of a screw dislocation with a nano-sized, arbitrarily shaped inhomogeneity with interface stresses under anti-plane deformations. Proc. R. Soc. Lond. A 470(2170), 20140313 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Dai, M., Schiavone, P., Gao, C.F.: Screw dislocation in a thin film with surface effects. Int. J. Solids Struct. 110–111, 89–93 (2017)

    Google Scholar 

  31. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(5), 663–671 (2004)

    Article  ADS  MATH  Google Scholar 

  32. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. Lond. A 461(2062), 3335–3353 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Xu, Q., Jensen, K.E., Boltyanskiy, R., Sarfati, R., Style, R.W., Dufresne, E.R.: Direct measurement of strain-dependent solid surface stress. Nat. Commun. 8, 555 (2017)

    Article  ADS  Google Scholar 

  34. Luo, J.C., Gao, C.F.: Faber series method for plane problems of an arbitrarily shaped inclusion. Acta Mech. 208(3–4), 133–145 (2009)

    Article  MATH  Google Scholar 

  35. Dai, M., Schiavone, P., Gao, C.F.: Uniqueness of neutral elastic circular nano-inhomogeneities in antiplane shear and plane deformations. J. Appl. Mech. 83(10), 101001 (2016)

    Article  ADS  Google Scholar 

  36. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhof, Groningen (1953)

    MATH  Google Scholar 

  37. Dai, M., Sun, H.Y.: Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions. Int. J. Mech. Sci. 75(6), 337–344 (2013)

    Article  Google Scholar 

  38. Savin, G.N.: Stress Concentration Around Holes. Pergamon Press, New York (1961)

    MATH  Google Scholar 

Download references

Acknowledgements

Wang appreciates the support of the China Scholarship Council. Wang and Gao acknowledge the support of the National Natural Science Foundation of China (11472130). Chen thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengtao Chen or Cunfa Gao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xing, S., Chen, Z. et al. A Nanoscale Hole of Arbitrary Shape with Surface Elasticity. J Elast 136, 123–135 (2019). https://doi.org/10.1007/s10659-018-9700-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9700-7

Keywords

Mathematics Subject Classification

Navigation