Skip to main content
Log in

Hyper-stresses in \(k\)-Jet Field Theories

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

For high-order continuum mechanics and classical field theories configurations are modeled as sections of general fiber bundles and generalized velocities are modeled as variations thereof. Smooth stress fields are considered and it is shown that three distinct mathematical stress objects play the roles of the traditional stress tensor of continuum mechanics in Euclidean spaces. These objects are referred to as the variational hyper-stress, the traction hyper-stress and the non-holonomic stress. The properties of these three stress objects and the relations between them are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)

    Article  MATH  Google Scholar 

  2. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  3. Bertram, A.: Compendium on Gradient Materials (2017). http://www.ifme.ovgu.de/ifme_media/FL/Publikationen/Compendium+on+Gradient+Materials_May+2017.pdf

    Google Scholar 

  4. Binz, E., Śniatycki, J., Fischer, H.: Geometry of Classical Fields. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  5. de León, M., Rodrigues, P.R.: Generalized Classical Mechanics and Field Theory: A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  6. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in \(N\)th gradient continua: approach “á la d’Alembert”. Z. Angew. Math. Phys. 63, 1119–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. dell’Isola, F., Seppecher, P., della Corte, A.: The postulations á la d’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A 471, 20150415 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fosdick, R.: A generalized continuum theory with internal corner and surface contact interactions. Contin. Mech. Thermodyn. 28, 275–292 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Advanced Classical Field Theory. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  10. Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum maps and classical fields. Part I: Covariant field theory (2003). arXiv:physics/9801019 [math-ph]

  11. Hirsch, M.: Differential Topology. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  12. Kijowski, J., Tuczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture Notes in Physics, vol. 107. Springer, Berlin (1979)

    Book  Google Scholar 

  13. Kupferman, R., Olami, E., Segev, R.: Stress theory for classical fields. Math. Mech. Solids (2017). https://doi.org/10.1177/1081286517723697

    Google Scholar 

  14. Lewis, A.: Notes on Global Analysis. Appendix F: Multilinear Algebra (2014). http://www.mast.queensu.ca/~andrew/teaching/math942/pdf/1appendixf.pdf

    Google Scholar 

  15. Michor, P.W.: Manifolds of Differentiable Mappings. Shiva, Chandigarh (1980)

    MATH  Google Scholar 

  16. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  18. Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics. In: Henkin, L., Suppes, P., Tarski, A. (eds.) The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 266–281. North-Holland, Amsterdam (1959)

    Google Scholar 

  19. Noll, W., Virga, E.G.: On edge interactions and surface tension. Arch. Ration. Mech. Anal. 111, 1–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Palais, R.S.: Foundations of Global Non-Linear Analysis. Benjamin, Elmsford (1968)

    MATH  Google Scholar 

  21. Podio-Guidugli, P.: Cauchy’s construction for flat complex bodies. J. Elast. 118, 101–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101, 59–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saunders, D.J.: The Geometry of Jet Bundles. London Mathematical Society: Lecture Notes Series, vol. 142. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  24. Segev, R.: Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27, 163–170 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Segev, R.: Notes on metric independent analysis of classical fields. Math. Methods Appl. Sci. 36, 497–566 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Segev, R.: Geometric analysis of hyper-stresses. Int. J. Eng. Sci. 120, 100–118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Segev, R., DeBotton, G.: On the consistency conditions for force systems. Int. J. Non-Linear Mech. 26, 47–59 (1991)

    Article  MathSciNet  Google Scholar 

  28. Segev, R., Rodnay, G.: Cauchy’s theorem on manifolds. J. Elast. 56(2), 129–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Segev, R., Śniatycki, J.: On jets, almost symmetric tensors, and traction hyper-stresses. Math. Mech. Complex Syst. 6, 101–124 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors are grateful to BIRS for sponsoring the Banff Workshop on Material Evolution, June 11–18, 2017, which led to this collaboration. R.S.’s work has been partially supported by H. Greenhill Chair for Theoretical and Applied Mechanics and the Pearlstone Center for Aeronautical Engineering Studies at Ben-Gurion University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuven Segev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segev, R., Śniatycki, J. Hyper-stresses in \(k\)-Jet Field Theories. J Elast 135, 457–483 (2019). https://doi.org/10.1007/s10659-018-9691-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9691-4

Keywords

Mathematics Subject Classification

Navigation