Skip to main content
Log in

Multi-Scale Asymptotic Expansion for a Small Inclusion in Elastic Media

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The aim of this paper is to present an asymptotic expansion of the influence of a small inclusion of different stiffness in an elastic media. The applicative interest of this study is to provide tools which take into account this influence and correct the deformation without inclusion by additive terms that can be precalculated and which depend only on the shape of the inclusion. We treat two problems: an anti-plane linearized elasticity problem and a plane strain problem. On every expansion order we provide corrective terms modeling the influence of the inclusion using techniques of scaling and multi-scale asymptotic expansions. The resulting expansion is validated by comparing it to a test case obtained by solving the Poisson transmission problem in the case of an inclusion of circular shape using the separation of variables method. Proofs of existence and uniqueness of our fields on unbounded domains are also adapted to the bidimensional Poisson problem and the linear elasticity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  2. Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(\mathbb{R}^{n}\). J. Math. Pures Appl. 73, 579–606 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Antipov, Y.A., Schiavone, P.: On the uniformity of stresses inside an inhomogeneity of arbitrary shape. Int. J. Eng. Sci. 68, 299–311 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Bacca, M., Bigoni, D., Corso, F.D., Veber, D.: Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Part I: closed form expression for the effective higher-order constitutive tensor. Int. J. Solids Struct. 50(24), 4010–4019 (2013)

    Article  Google Scholar 

  5. Bacca, M., Bigoni, D., Corso, F.D., Veber, D.: Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Part II: higher-order constitutive properties and application cases. Int. J. Solids Struct. 50(24), 4020–4029 (2013)

    Article  Google Scholar 

  6. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Mathematics and Its Applications. Kluwer Academic, Dordrecht (1989)

    Book  MATH  Google Scholar 

  7. Bendali, A., Lemrabet, K.: The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56(6), 1664–1693 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beretta, E., Bonnetier, E., Francini, E., Mazzucato, A.L.: An asymptotic formula for the displacement field in the presence of small anisotropic elastic inclusions. Inverse Probl. Imaging 6, 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonnetier, E., Triki, F.: Asymptotics in the presence of inclusions of small volume for a conduction equation: a case with a non-smooth reference potential. Contemp. Math. 494, 95–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezis, H.: Progress in Nonlinear Differential Equations and Their Applications: In Memory of Pierre Grisvard. Birkhäuser, Boston (1996)

    Google Scholar 

  11. Capdeboscq, Y., Vogelius, M.: A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Anal. 37, 159–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Capdeboscq, Y., Vogelius, M.: A review of some recent work on impedance imaging for inhomogeneities of low volume fraction. Contemp. Math. 362, 69–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chand, C.S., Conway, H.D.: A parametric study of the complex variable method for analyzing the stresses in an infinite plate containing a rigid rectangular inclusion. Int. J. Solids Struct. 4, 1057–1066 (1968)

    Article  MATH  Google Scholar 

  14. Corso, F.D., Shahzad, S., Bigoni, D.: Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part I: formulation and full-field solution. Int. J. Solids Struct. 85, 67–75 (2016)

    Article  Google Scholar 

  15. Corso, F.D., Shahzad, S., Bigoni, D.: Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part II: singularities, annihilation and invisibility. Int. J. Solids Struct. 85, 76–88 (2016)

    Article  Google Scholar 

  16. Dambrine, M., Vial, G.: Influence of a boundary perforation on a Dirichlet energy. Control Cybern. 34(1), 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Dambrine, M., Vial, G.: A multiscale correction method for local singular perturbations of the boundary. Math. Model. Numer. Anal. 41(1), 111–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dauge, M., Tordeux, S., Vial, G.: Selfsimilar perturbation near a corner: matching versus multiscale expansions for a model problem. In: Around the Research of Vladimir Maz’ya. II. Int. Math. Ser. (N. Y.), vol. 12, pp. 95–134. Springer, New York (2010)

    Chapter  Google Scholar 

  19. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, New York (2004)

    Book  MATH  Google Scholar 

  20. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 241, 376–396 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 252, 561–569 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fortin, A., Garon, A.L.: Eléments Finis: de la Théorie à la Pratique. Université Laval Ecole Polytechnique de Montréal, Montreal (2011)

    Google Scholar 

  23. Geymonat, G., Krasucki, F., Lenci, S.: Mathematical analysis of a bonded joint with a soft thin adhesive. Math. Mech. Solids 4(2), 201–225 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hansen, D.J., Poignard, C., Vogelius, M.S.: Asymptotically precise norm estimates of scattering from a small circular inhomogeneity. Appl. Anal. 86(4), 433–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Am. Math. Soc, Providence (1992)

    MATH  Google Scholar 

  26. Kröner, E.: Statistical modelling. In: Gittus, J., Zarka, J. (eds.) Modelling Small Deformations of Polycrystals, pp. 229–291. Springer, Dordrecht (1986)

    Chapter  Google Scholar 

  27. Kröner, E.: Modified green functions in the theory of heterogeneous and/or anisotropic linearly elastic media. In: Weng, G.J., Taya, M., Abé, H. (eds.) Micromechanics and Inhomogeneity: The Toshio Mura 65th Anniversary Volume, pp. 197–211. Springer, New York (1990)

    Chapter  Google Scholar 

  28. Lewinski, T., Sokolowski, J.: Topological derivative for nucleation of non-circular voids. the Neumann problem. In: Gulliver, R., Littman, W., Triggiani, R. (eds.) Differential Geometric Methods in the Control of Partial Differential Equations, vol. 268, pp. 341–361. Am. Math. Soc., Providence (2000)

    Chapter  Google Scholar 

  29. Li, S., Sauer, R., Wang, G.: A circular inclusion in a finite domain I. the Dirichlet-Eshelby problem. Acta Mech. 179(1), 67–90 (2005)

    Article  MATH  Google Scholar 

  30. Lignon, E.: Modélisation multi-échelles de nappes fibrées en compression. Ph.D. thesis, Ecole Polytechnique (2011)

  31. Mazilu, P.: On the theory of linear elasticity in statically homogeneous media. Rev. Roum. Math. Pures Appl. 17, 261–273 (1972)

    MATH  Google Scholar 

  32. Maz’ya, V., Nazarov, S., Plamenevski, B.: Asymptotics of solutions to elliptic boundary-value problems under a singular perturbation of the domain. Probl. Mat. Anal. 8, 72–153 (1981)

    Google Scholar 

  33. Maz’ya, V., Nazarov, S., Plamenevskij, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Birkhäuser, Basel (2000)

    Book  Google Scholar 

  34. Panasenko, G.P.: Homogenization for periodic media: from microscale to macroscale. Phys. At. Nucl. 71(4), 681–694 (2008)

    Article  Google Scholar 

  35. Sánchez-Palencia, E.: Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité. J. Math. Pures Appl. 53(9), 251–269 (1974)

    MathSciNet  MATH  Google Scholar 

  36. Schiavone, P.: Neutrality of the elliptic inhomogeneity in the case of non-uniform loading. IMA J. Appl. Math. 8, 161–169 (2003)

    MATH  Google Scholar 

  37. Shahzad, S., Dal Corso, F., Bigoni, D.: Hypocycloidal inclusions in nonuniform out-of-plane elasticity: stress singularity vs. stress reduction. J. Elast. 126(2), 215–229 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, Y., Peng, Y.: Analytic solutions for the problems of an inclusion of arbitrary shape embedded in a half space. Appl. Math. Comput. 140, 105–113 (2003)

    MathSciNet  MATH  Google Scholar 

  39. van Dyke, M.: Perturbation Methods in Fluid Mechanics. Academic Press, New York (1964)

    MATH  Google Scholar 

  40. Vial, G.: Analyse multi-échelle et conditions aux limites approchées pour un problème avec couche mince dans un domaine à coin. Ph.D. thesis, Université de Rennes 1 (2003)

Download references

Acknowledgements

This work was funded by a grant from the French manufacturer of tire “Michelin” and contributions from the Franco-Tunisian project PHC-Utique CMCU No. 14G1103, Campus France No. 30643PM. Special thanks to Patrice Hauret, Thomas Homolle and Eric Lignon from the Michelin research and development team for fruitful exchanges and constructive advices during multiple meetings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Moakher.

Appendix:  Poincaré-Type Inequality

Appendix:  Poincaré-Type Inequality

We establish the existence and uniqueness of the profile functions \(V^{(k)}\) introduced previously in the asymptotic expansion at order \(K\) given by (26). The functions \(V^{(k)}\) are defined on \(\mathbb{R}^{2}\) (two-dimensional geometry) and are solutions to the family of Problems (7a)–(7e). For that, we will introduce weighted Sobolev spaces \(\mathcal{W}_{\alpha ,\beta }^{m,p}\) (\(\mathcal{W}_{0,0} ^{1,2}\) in our case) similar to classical ones \(\mathcal{W}^{m,p}\) (\(H ^{1}\) in our case) but with weights that describe the growth or the decay of functions at infinity. The idea of using weighted spaces arises naturally from Hardy’s inequalities and will allow us to establish a Poincaré inequality relating to norms of functions and to that of their derivatives.

The use of these weights is necessary to obtain a Poincaré-type inequality and eliminates the drawbacks of spaces defined by the closure of \(\mathcal{D}(\mathbb{R}^{2})\) for the Dirichlet norm and which are not always spaces of distributions. The appropriate weights arise naturally from Hardy’s inequality or from a generalized Hardy’s inequality (see [2]) and the classical weights are of the form \(\rho =(1+ \vert x \vert^{2})^{\frac{1}{2}}\), but there is appearance of a logarithmic factor in our case.

1.1 A.1 Notations and Functional Setting

All functions and distributions here are defined on the two-dimensional real Euclidean space \(\mathbb{R}^{2}\).

Let \(r=\vert x\vert =(x_{1}^{2}+x_{2}^{2})^{\frac{1}{2}}\) be the distance of a point \(x=(x_{1},x_{2})\) to the origin. Recall that \(\mathcal{D}(\mathbb{R}^{2})\) denotes the space of infinitely differentiable functions with compact support and \(\mathcal{D}'( \mathbb{R}^{2})\) its dual space called space of distributions. With \(\lambda =(\lambda_{1},\ldots ,\lambda_{n}) \in \mathbb{N}^{n}\) a multi-index \(D^{\lambda }=D_{1}^{\lambda_{1}} \cdots D_{n}^{\lambda _{n}}\) is the differential operator of order \(\vert \lambda \vert = \lambda_{1}+ \cdots +\lambda_{n}\). \(L^{2}(\mathbb{R}^{2})\) is the classical space of measurable functions for which \((\int_{\mathbb{R} ^{2}} \vert u \vert^{2}\, \mathrm{d}\boldsymbol{x}) < \infty \). It is a Banach space for the norm \(\Vert u \Vert =(\int_{\mathbb{R}^{2}} \vert u \vert^{2}\, \mathrm{d}\boldsymbol{x})^{\frac{1}{2}}\).

With \(\rho =(1+r^{2})^{\frac{1}{2}}\) we introduce the weighted Sobolev space, which is appropriate to our case, by:

$$ \mathcal{W}_{0,0}^{1,2}\bigl(\mathbb{R}^{2}\bigr) = \bigl\{ u \in \mathcal{D}'\bigl( \mathbb{R}^{2}\bigr), \rho^{-1}(\lg \rho )^{-1} u \in L^{2}\bigl( \mathbb{R}^{2}\bigr), \nabla u \in \bigl(L^{2}\bigl( \mathbb{R}^{2}\bigr)\bigr)^{2} \bigr\} , $$

which is a reflexive Banach space equipped with its natural norm:

$$ \Vert u \Vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})} = \bigl(\bigl\Vert \rho ^{-1}(\lg \rho )^{-1} u \bigr\Vert _{L^{2}(\mathbb{R}^{2})}^{2}+\Vert \nabla u \Vert_{L^{2}(\mathbb{R}^{2})}^{2}\bigr)^{\frac{1}{2}}. $$

We also define the semi-norm:

$$ \vert u \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})}=\Vert \nabla u \Vert_{L^{2}(\mathbb{R}^{2})}. $$

With \(r=\vert x \vert \) we set \(\lg (r)=\ln (2+r^{2})\), \(B_{R}=B(0,R)\) the open ball with center 0 and radius \(R\) and \(B'_{R}=( \overline{B}_{R})^{c}\) the exterior of \(\overline{B}_{R}\). Finally, we define \(P_{0}\) as the space of constant functions.

1.2 A.2 An Intermediate Result

The following result is an intermediate result to prove the equivalence of the norm and the semi-norm.

Lemma 3

For any large enough real number \(R\), there exists a constant \(C_{R}\) such that:

$$ \forall \phi \in \mathcal{D}\bigl(B'_{R}\bigr), \quad \Vert \varphi \Vert_{\mathcal{W}_{0,0}^{1,2}(B'_{R})} \leq C_{R}\vert \varphi \vert_{\mathcal{W}_{0,0}^{1,2}(B'_{R})}. $$

Proof

Let \(\varphi \) belong to \(\mathcal{D}'_{R}\). First, observe that, owing to the support of \(\varphi \), all integrals in the norm and semi-norm are taken on \(B'_{R}\) instead of \(\mathbb{R}^{2}\). Hence, since the origin is in the interior of \(B_{R}\), we can use \(r\) and \(\ln r\) instead of \(\rho (r)\) and \(\lg (r)\) in the expression of the norm and seminorm. Then using \(\frac{\partial \varphi }{\partial r}= \nabla \varphi \cdot \frac{\boldsymbol{r}}{r}\) we can write:

$$ \biggl\vert \frac{\partial \varphi }{\partial r} \biggr\vert ^{2} \leq 2 \sum_{i= 1}^{2}{ \biggl\vert \frac{\partial \varphi }{\partial x _{i}} \biggr\vert ^{2}}. $$
(94)

Let \(\theta \) be the angular variable, then we have:

$$ \varphi (r,\theta )= \int_{R}^{r} \varphi (t,\theta ) \, \mathrm{d}t. $$

Now, assuming that \(R\) is large enough, we apply the generalized Hardy’s inequality (see [2]) (with \(\gamma =-2\)) to the function \(r\rightarrow \varphi (r,\theta )\). Integrating with respect to \(\theta \) and applying (94) we obtain:

$$ \bigl\Vert r^{-1}\ln r^{-1} \varphi \bigr\Vert _{L^{2}(B'_{R})}\leq C \Vert D \varphi \Vert_{L^{2}(B'_{R})}. $$

 □

The needed result can now be proven.

1.3 A.3 A Poincaré-Type Inequality

Theorem 3

The semi-norm \(\vert \cdot \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R} ^{2})}\) defines on \(\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})/P_{0}\) a norm which is equivalent to the quotient norm.

Proof

It is clear that \(\vert \cdot \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})}\) is a norm on \(\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})/P_{0}\), and that:

$$ \forall u \in \mathcal{W}_{0,0}^{1,2}\bigl( \mathbb{R}^{2}\bigr), \quad \vert u \vert_{\mathcal{W}_{0,0}^{1,2}}\bigl( \mathbb{R}^{2}\bigr) \leq \Vert u \Vert_{\mathcal{W}_{0,0}^{1,2}}\bigl( \mathbb{R}^{2}\bigr). $$
(95)

Thus, we only have to prove that there exits \(c > 0\) such that:

$$ \forall \dot{u} \in \mathcal{W}_{0,0}^{1,2} \bigl(\mathbb{R}^{2}\bigr)/P_{0}, \quad \Vert \dot{u} \Vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})/P_{0}} \leq c\vert u \vert_{\mathcal{W}_{0,0}^{1,2}}\bigl( \mathbb{R}^{2}\bigr). $$
(96)

The proof proceeds in two steps. The first step consists in eliminating the quotient norm by choosing an adequate representative of the class of \(\dot{u}\). To this end, we fix a bounded open domain of \(\mathbb{R}^{2}\), with positive measure, say \(O\), and we choose the representative \(U\) of \(\dot{u}\) in \(\mathcal{W}_{0,0}^{1,2}( \mathbb{R}^{2})\) that satisfies the system of equations:

$$ \forall \mu \in P_{0}, \int_{O} U \mu \mathrm{d}\boldsymbol{x}=0. $$
(97)

It is easy to see that (97) determines \(U\) uniquely and that:

$$ \Vert \dot{u} \Vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})/P_{0}} \leq \Vert U \Vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})}. $$
(98)

Therefore, the second step consists in proving that there exists a constant \(C\) such that the following bound holds for all \(U\) in \(\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})\) satisfying (97):

$$ \Vert U \Vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})} \leq C\vert U \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})}. $$
(99)

We shall prove it by contradiction. If (99) is not true, there exists a sequence \((U_{\nu })\) of elements of \(\mathcal{W}_{0,0}^{1,2}( \mathbb{R}^{2})\) satisfying (98) and such that:

$$ \Vert U_{\nu } \Vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})} = 1 \quad \text{and}\quad \vert U_{\nu } \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})} \rightarrow 0. $$
(100)

Hence the sequence \((U_{\nu })\) is bounded in \(\mathcal{W}_{0,0}^{1,2}( \mathbb{R}^{2})\) and since this is a reflexive Banach space, we can extract a subsequence, still denoted by \((U_{\nu })\), that converges weakly to an element \(U_{*}\) of \(\mathcal{W}_{0,0}^{1,2}(\mathbb{R} ^{2})\) and it is easy to check from this weak convergence that \(U_{*}\) also satisfies (98). But since \(\vert u \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})}\) tends to 0, the lower semi-continuity of the norm implies that \(\vert u \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})}=0\). Thus, \(U_{*}\) is a constant (polynomial of \(P_{0}\)) and the fact that \(U_{*}\) satisfies (98) implies that \(U_{*}=0\).

Now, we need a strong convergence to conclude by contradiction, but we cannot use a standard compactness argument on an unbounded domain. Instead, we shall derive a strong convergence via an adequate partition of unity that will enable us to consider separately a bounded domain where the topologies of \(\mathcal{W}_{0,0}^{1,2}\) and \(H^{1}\) coincide and the exterior of a ball, where Lemma 3 can be applied.

Let \(R\) denote a real number, large enough to apply the generalized Hardy’s inequality. Let \(\varphi \) and \(\psi \) be two functions of \(C^{\infty }(\mathbb{R}^{2})\) such that:

$$\begin{aligned} \forall \boldsymbol{x} \in \mathbb{R}^{2},\quad (\varphi + \psi ) (\boldsymbol{x})=1, \quad 0 \leq \varphi (\boldsymbol{x}) \leq 1,\quad \operatorname{supp}(\phi )\subset \overline{B}_{R+1},\quad \operatorname{supp}(\psi ) \subset B'_{R}. \end{aligned}$$
(101)

Since for fixed \(R\), \(\mathcal{W}_{0,0}^{1,2}(B_{R+1})\) is isomorphic to \(R\), \(H^{1}(B_{R+1})\), we have that \(U_{\mu }\) converges weakly to 0 in \(H^{1}(B_{R+1})\). Since \(H^{1}(B_{R+1})\) is compactly embedded into \(L^{2}(B_{R+1})\), it follows that

$$ U_{\nu }\rightarrow 0\quad \mbox{strongly in } L^{2}(B_{R+1}). $$
(102)

In addition, as \(\vert U_{\nu } \vert_{\mathcal{W}_{0,0}^{1,2}(\mathbb{R}^{2})}\) tends to 0, it follows that

$$ U_{\nu }\rightarrow 0\quad \mbox{strongly in } \mathcal{W}^{1,2}(B_{R+1}), $$
(103)

so that

$$ \varphi U_{\nu }\rightarrow 0 \quad \mbox{strongly in } \mathcal{W}^{1,2} _{0,0}(B_{R+1}). $$
(104)

Now, let us examine the behavior of \(\psi U_{\nu }\). For fixed \(\nu \), let \((\theta_{j})\) be a sequence of functions of \(\mathcal{D}( \mathbb{R}^{2})\) that tends to \(U_{\nu }\) in \(\mathcal{W}^{1,2}_{0,0}( \mathbb{R}^{2})\). Then, \(\psi \theta_{j}\) belongs to \(\mathcal{D}(B '_{R})\) and we can apply to it Lemma 3

$$ \Vert \psi \theta_{j} \Vert_{\mathcal{W}^{1,2}_{0,0}(\mathbb{R}^{2})} \leq C_{R} \vert \psi \theta_{j} \Vert_{\mathcal{W}^{1,2}_{0,0}(B'_{R})}. $$
(105)

Then, letting \(j\) tend to infinity and using the fact that \(\psi \) is identically one outside \(B_{R+1}\), we obtain:

$$ \Vert \psi U_{\nu } \Vert_{\mathcal{W}^{1,2}_{0,0}(\mathbb{R}^{2})} \leq C_{R} \vert \psi U_{\nu } \vert_{\mathcal{W}^{1,2}_{0,0}(B' _{R})} \leq C_{R} \bigl( \vert \psi U_{\nu } \vert^{p}_{\mathcal{W} ^{1,2}_{0,0}(B'_{R} \cap B_{R+1})}+ \vert U_{\nu } \vert^{p}_{ \mathcal{W}^{1,2}_{0,0}(B'_{R+1})} \bigr) ^{\frac{1}{p}}. $$
(106)

Next, let \(\nu \) tend to infinity and observe that \(\psi U_{\nu }\) tends to zero strongly in \(\mathcal{W}^{1,2}_{0,0}(B'_{R} \cap B_{R+1})\) because \(B'_{R} \cap B_{R+1}\) is bounded and \(\mathcal{W}^{1,2} _{0,0}(B'_{R} \cap B_{R+1})\) is isomorphic to \(\mathcal{W}^{1,2}(B '_{R} \cap B_{R+1})\); we derive that:

$$ \psi U_{\nu }\rightarrow 0\quad \mbox{strongly in } \mathcal{W}^{1,2} _{0,0}\bigl(B'_{R} \bigr). $$
(107)

Since \(U_{\nu }=\varphi U_{\mu }+\psi U_{\mu }\), we obtain:

$$ U_{\mu }\rightarrow 0\quad \mbox{strongly in } \mathcal{W}^{1,2}_{0,0}\bigl( \mathbb{R}^{2}\bigr), $$
(108)

which contradicts the assumption (100) that:

$$ \Vert U_{\mu } \Vert_{\mathcal{W}^{1,2}_{0,0}(\mathbb{R}^{2})}=1. $$

 □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, M., Ben Hassine, M.R., Moakher, M. et al. Multi-Scale Asymptotic Expansion for a Small Inclusion in Elastic Media. J Elast 131, 207–237 (2018). https://doi.org/10.1007/s10659-017-9653-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9653-2

Keywords

Mathematics Subject Classification (2000)

Navigation