Skip to main content

Objectivity of State-Based Peridynamic Models for Elasticity

Abstract

We verify the objectivity (invariance to rigid body rotations) ordinary state-based peridynamic models published in the literature that differ in their formulas. We find and explain the sources for the differences between these published formulas. We demonstrate that a primary cause leading to these differences is the way in which the peridynamic volume dilatation is defined in the different formulations. We show that the equations of motion derived from one approach apply to deformations with small or large rotations and is objective. The other approach is valid only for deformations with zero/infinitesimal rotations, thus it is not objective. We also show that both state-based models recover the correct bond-based formulations with the appropriate Poisson ratio values when the term containing the volume dilatation vanishes.

This is a preview of subscription content, access via your institution.

Notes

  1. Note: the derivation below was kindly suggested by one of the three anonymous reviewers, who also gave us permission to include it in the manuscript. We thank the reviewer.

References

  1. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  2. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  3. Sarego, G., Le, Q.V., Bobaru, F., Zaccariotto, M., Galvanetto, U.: Linearized state-based peridynamics for 2D problems. Int. J. Numer. Methods Eng. 108, 1174–1197 (2016)

    Article  Google Scholar 

  4. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  5. Oterkus, E., Madenci, E.: Ordinary state-based peridynamic material constants. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, p. 1946 (2012)

    Google Scholar 

  6. Madenci, E., Oterkus, S.: Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J. Mech. Phys. Solids 86, 192–219 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  7. Le, Q.V., Chan, W.K., Schwartz, J.: A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int. J. Numer. Methods Eng. 98, 547–561 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  8. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)

    Article  Google Scholar 

  10. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  11. Aguiar, A.R., Fosdick, R.: A constitutive model for a linearly elastic peridynamic body. Math. Mech. Solids 19, 502–523 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  12. Aguiar, A.R.: On the determination of a peridynamic constant in a linear constitutive model. J. Elast. 122, 27–39 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  13. Oterkus, S., Madenci, E.: Peridynamics for antiplane shear and torsional deformations. J. Mech. Mater. Struct. 10, 167–193 (2015)

    MathSciNet  Article  Google Scholar 

  14. Le, Q., Chan, W.K., Schwartz, J.: Two-dimensional peridynamic simulation of the effect of defects on the mechanical behavior of Bi2Sr2CaCu2Ox round wires. Supercond. Sci. Technol. 27, 115007 (2014)

    ADS  Article  Google Scholar 

  15. Foster, J.T., Silling, S.A., Chen, W.: An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9, 675–688 (2011)

    Article  Google Scholar 

  16. Foster, J.T., Silling, S.A., Chen, W.W.: Viscoplasticity using peridynamics. Int. J. Numer. Methods Eng. 81, 1242–1258 (2010)

    MATH  Google Scholar 

  17. Silling, S.A.: Linearized theory of peridynamic states. J. Elast. 99, 85–111 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  18. Mitchell, J.A., Nonlocal, A.: Ordinary, State-Based Plasticity Model for Peridynamics. Sandia National Laboratories, vol. SAND2011-3166 (2011)

  19. van der Merwe, C.W.: A peridynamic model for sleeved hydraulic fracture. Master of Engineering Thesis, Stellenbosch University (2014). http://hdl.handle.net/10019.1/95993

  20. Han, F., Lubineau, G., Azdoud, Y., Askari, A.: A morphing approach to couple state-based peridynamics with classical continuum mechanics. Comput. Methods Appl. Mech. Eng. 301, 336–358 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  21. Seleson, P., Parks, M.: On the role of the influence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)

    Article  Google Scholar 

  22. Seleson, P., Parks, M.L., Gunzburger, M.: Peridynamic state-based models and the embedded-atom model. Commun. Comput. Phys. 15, 179–205 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  23. Thorpe, M., Jasiuk, I.: New results in the theory of elasticity for two-dimensional composites. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 438, pp. 531–544 (1992)

    Google Scholar 

  24. Lehoucq, R.B., Silling, S.A.: Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56, 1566–1577 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. Silling, S., Littlewood, D., Seleson, P.: Variable horizon in a peridynamic medium. J. Mech. Mater. Struct. 10, 591–612 (2015)

    MathSciNet  Article  Google Scholar 

  26. Gerstle, W.H., Sau, N., Silling, S.A.: Peridynamic modeling of plain and reinforced concrete structures. In: 18th International Conference on Structural Mechanics in Reactor Technology, Beijing, China (2005)

    Google Scholar 

  27. Bobaru, F., Yang, M., Alves, L.F., Silling, S.A., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77, 852–877 (2009)

    Article  MATH  Google Scholar 

  28. Bobaru, F., Ha, Y.D.: Adaptive refinement and multiscale modeling in 2D peridynamics. J. Multiscale Comput. Eng. 9, 635–660 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by AFOSR MURI Center for Materials Failure Prediction through Peridynamics (program managers Drs. James Fillerup, Ali Sayir, David Stargel, and Fariba Fahroo), by a grant from ARO (program managers Dr. Larry Russell), and by ONR (program manager William Nickerson). We would like to thank Dr. Stewart Silling, Prof. Erdogan Madenci and Prof. Erkan Oterkus for very helpful discussions. We also thank the anonymous reviewer who pointed out a possible derivation for the nonlocal dilatation formula in Sect. 2.2.2 and gave us permission to include it here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Bobaru.

Appendices

Appendix A: Peridynamic States and Their Operations

The peridynamic states and their operations are defined in [2]. Below is a summary of the basic concepts.

Definition 1

Let ℋ be a neighborhood of radius \(\delta\) centered at the origin in \(\mathbb{R}^{3}\). Let \(\mathcal{L}_{m}\) denote the set of all tensors of order \(m\). Then a state of order \(m\) is a function \(\underline{\mathbf{A}} \langle \boldsymbol{\cdot} \rangle \mathcal{:H\rightarrow L}_{m}\).

A peridynamic state maps a peridynamic bond vector (\(\boldsymbol{\xi}\)) to a tensor of order \(m\). Examples of peridynamic states include: the reference position scalar state \(\underline{x} \) (mapping a bond vector to its undeformed bond length), extension scalar state \(\underline{e} \) (mapping a bond vector to the bond’s elongation), force vector state \(\underline{\mathbf{T}} \) (mapping a bond vector to the bond’s force density vector).

Definition 2

Let \(\underline{\mathbf{A}} \in \mathcal{A}_{m}\) and \(\underline{\mathbf{B}} \in \mathcal{A}_{m}\). The sum and the difference of the states \(\underline{\mathbf{A}}\) and \(\underline{\mathbf{B}}\) are, respectively:

$$\begin{aligned} ( \underline{\mathbf{A}} + \underline{\mathbf{B}} ) \langle \boldsymbol{\xi} \rangle =& \underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle + \underline{\mathbf{B}} \langle \boldsymbol{\xi} \rangle, \end{aligned}$$
(45)
$$\begin{aligned} ( \underline{\mathbf{A}} - \underline{\mathbf{B}} ) \langle \boldsymbol{\xi} \rangle =& \underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle - \underline{\mathbf{B}} \langle \boldsymbol{\xi} \rangle. \end{aligned}$$
(46)

Definition 3

The point product of two states \(\underline{\mathbf{A}} \in \mathcal{A}_{m+p}\) and \(\underline{\mathbf{B}} \in \mathcal{A}_{p}\) is a state in \(\mathcal{A}_{m}\) and defined by:

$$\begin{aligned} ( \underline{\mathbf{AB}} )_{i_{1} \dots i_{m}} \langle \boldsymbol{\xi} \rangle = \underline{A}_{i_{1} \dots i_{m} j_{1} \dots i_{p}} \langle \boldsymbol{\xi} \rangle \underline{B}_{j_{1} \dots j_{p}} \langle \boldsymbol{\xi} \rangle. \end{aligned}$$
(47)

Similarly,

$$\begin{aligned} ( \underline{\mathbf{BA}} )_{i_{1} \dots i_{m}} \langle \boldsymbol{\xi} \rangle = \underline{B}_{j_{1} \dots j_{p}} \langle \boldsymbol{\xi} \rangle \underline{A}_{j_{1} \dots j_{p} i_{1} \dots i_{m}} \langle \boldsymbol{\xi} \rangle. \end{aligned}$$
(48)

Note that in this definition, the Einstein summation notation is used, i.e., the summation over all the \(j_{1} \dots j_{p}\) components. The point product of two states is not necessarily commutative. If at least one of the two states is a scalar state, then their point product is commutative.

Definition 4

The dot product of two states \(\underline{\mathbf{A}}\) and \(\underline{\mathbf{B}}\) is:

$$\begin{aligned} \underline{\mathbf{A}} \bullet \underline{\mathbf{B}} = \int_{\mathcal{H}} ( \underline{\mathbf{AB}} ) \langle \boldsymbol{\xi} \rangle dV_{ \langle \boldsymbol{\xi} \rangle}. \end{aligned}$$
(49)

Note that the dot product of two states is not a state, unlike the point product in Definition 3.

Appendix B: Testing the Dilatation Terms of Approaches A and B in 3D

Testing conditions:

To compare the value of classical volume dilation with the peridynamic volume dilation formulas given by Eqs. (7) and (14), we subject an elastic material to a homogeneous deformation given by \(( \boldsymbol{\xi} + \boldsymbol{\eta}) = \mathbf{F}. \boldsymbol{\xi}\), where \(\mathbf{F}\) is the classical deformation gradient tensor. We test three cases: (i) large strains and no rotations; (ii) small strains and large rotations, and (iii) small strains and no rotations. Here are some specific values for \(\mathbf{F}\):

$$\begin{aligned} \mbox{(i)} \quad \mathbf{F} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1 \end{array}\displaystyle \right ] \ \ \mbox{implies volume dilatation } \mathrm{det}(\mathbf{F})-1 = 5. \\ \mbox{(ii)} \quad \mathbf{F} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & -1.01 & 0\\ 1.01 & 0 & 0\\ 0 & 0 & 1.01 \end{array}\displaystyle \right ]\ \ \mbox{gives volume dilatation } \mathrm{det}(\mathbf{F})-1 = 3.0301\times 10^{-2}.\\ \mbox{(iii)}\quad \mathbf{F} =& \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1.01 & 0 & 0\\ 0 & 0.99 & 0\\ 0 & 0 & 1.02 \end{array}\displaystyle \right ] \ \ \mbox{produces volume dilatation} \mathrm{det}(\mathbf{F})-1 = 1.9898\times 10^{-2}. \end{aligned}$$

For these corresponding deformations, we compute the peridynamic dilatations given by Eqs. (7) and (14) by numerical integration. We use numerical integration in Matlab (‘integral3’ function), and the integration region is a sphere of radius 1 \((\delta=1)\). We find the corresponding peridynamic dilatations \(\theta_{\mathrm{A}}\) and \(\theta_{\mathrm{B}}\). For case (i) we get \(\theta_{\mathrm{A}} \approx3.1557\) and \(\theta_{\mathrm{B}} \approx 3.3037\), both different from the value 5 obtained above. This verifies that approached A and B are not applicable for the case of large strains. For case (ii) we get \(\theta_{\mathrm{A}} \approx 1.0000\times 10^{-2}\) and \(\theta_{\mathrm{B}} \approx 3.0000\times 10^{-2}\). The volume dilatation formula from approach B gives a value which is only 1% different from the classical volume dilation, while approach A cannot be used for this case. For case (iii) we obtain \(\theta_{\mathrm{A}} \approx 2.0139\times 10^{-2}\) and \(\theta_{\mathrm{B}} \approx 2.0139\times 10^{-2}\). In this case, both formulas give results that are about 1% different from the classical value.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Le, Q., Bobaru, F. Objectivity of State-Based Peridynamic Models for Elasticity. J Elast 131, 1–17 (2018). https://doi.org/10.1007/s10659-017-9641-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9641-6

Keywords

  • Peridynamics
  • Elasticity
  • Objectivity
  • Ordinary state-based formulation
  • Volume dilatation
  • Large rotations

Mathematics Subject Classification

  • 74B05
  • 74A45
  • 74G15
  • 74G65
  • 74G70