Skip to main content
Log in

Models of Elastic Shells in Contact with a Rigid Foundation: An Asymptotic Approach

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We consider a family of linearly elastic shells with thickness \(2\varepsilon\) (where \(\varepsilon\) is a small parameter). The shells are clamped along a portion of their lateral face, all having the same middle surface \(S\), and may enter in contact with a rigid foundation along the bottom face.

We are interested in studying the limit behavior of both the three-dimensional problems, given in curvilinear coordinates, and their solutions (displacements \(\boldsymbol{u}^{\varepsilon}\) of covariant components \(u_{i}^{\varepsilon}\)) when \(\varepsilon\) tends to zero. To do that, we use asymptotic analysis methods. On one hand, we find that if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), a suitable approximation of the variational formulation of the contact problem is a two-dimensional variational inequality which can be identified as the variational formulation of the obstacle problem for an elastic membrane. On the other hand, if the applied body force density is \(O(\varepsilon^{2})\) and surface tractions density is \(O(\varepsilon^{3})\), the corresponding approximation is a different two-dimensional inequality which can be identified as the variational formulation of the obstacle problem for an elastic flexural shell. We finally discuss the existence and uniqueness of solution for the limit two-dimensional variational problems found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. A Wiley-Interscience Publication. Wiley, New York (1984). Applications to free boundary problems, translated from the Italian by Lakshmi Jayakar

    MATH  Google Scholar 

  2. Ben Belgacem, F., Bernardi, C., Blouza, A., Taallah, F.: On the obstacle problem for a Naghdi shell. J. Elast. 103(1), 1–13 (2011). doi:10.1007/s10659-010-9269-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Bermúdez, A., Moreno, C.: Duality methods for solving variational inequalities. Comput. Math. Appl. 7(1), 43–58 (1981). doi:10.1016/0898-1221(81)90006-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Bermúdez, A., Viaño, J.M.: Une justification des équations de la thermoélasticité de poutres à section variable par des méthodes asymptotiques. Math. Model. Numer. Anal. 18(4), 347–376 (1984)

    MATH  Google Scholar 

  5. Ciarlet, P.G.: Mathematical Elasticity, vol. I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 20. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  6. Ciarlet, P.G.: Mathematical Elasticity, vol. II: Theory of Plates. Studies in Mathematics and Its Applications, vol. 27. North-Holland, Amsterdam (1997)

    MATH  Google Scholar 

  7. Ciarlet, P.G.: Mathematical Elasticity, vol. III: Theory of Shells. Studies in Mathematics and Its Applications, vol. 29. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  8. Ciarlet, P.G., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Méc. 18(2), 315–344 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Ration. Mech. Anal. 136, 119–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G., Lods, V.: On the ellipticity of linear membrane shell equations. J. Math. Pures Appl. 75, 107–124 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Cimetière, A., Geymonat, G., Le Dret, H., Raoult, A., Tutek, Z.: Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elast. 19(2), 111–161 (1988). doi:10.1007/BF00040890

    Article  MathSciNet  MATH  Google Scholar 

  12. Destuynder, P.: Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Ph.D. thesis, Univ. P. et M. Curie, Paris (1980)

  13. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  14. Eck, C., Jarušek, J., Krbec, M.: Unilateral Contact Problems. Variational Methods and Existence Theorems. Pure and Applied Mathematics (Boca Raton), vol. 270. Chapman & Hall/CRC Press, London/Boca Raton (2005). doi:10.1201/9781420027365

    MATH  Google Scholar 

  15. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. Studies in Mathematics and Its Applications, vol. 8. North-Holland, Amsterdam/New York (1981). Translated from the French

    Book  MATH  Google Scholar 

  16. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. AMS/IP Studies in Advanced Mathematics. Am. Math. Soc./International Press, Providence/Somerville (2002)

    Book  MATH  Google Scholar 

  17. Hlaváček, I., Haslinger, J., Necǎs, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences. Springer, New York (1988)

    Book  MATH  Google Scholar 

  18. Irago, H., Viaño, J.M.: Error estimation in the Bernoulli-Navier model for elastic rods. Asymptot. Anal. 21(1), 71–87 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  20. Kunisch, K., Stadler, G.: Generalized Newton methods for the 2D-Signorini contact problem with friction in function space. ESAIM: M2AN 39(4), 827–854 (2005). doi:10.1051/m2an:2005036

    Article  MathSciNet  MATH  Google Scholar 

  21. Léger, A., Miara, B.: Mathematical justification of the obstacle problem in the case of a shallow shell. J. Elast. 90(3), 241–257 (2008). doi:10.1007/s10659-007-9141-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Léger, A., Miara, B.: Erratum to: Mathematical justification of the obstacle problem in the case of a shallow shell [mr2387957]. J. Elast. 98(1), 115–116 (2010). doi:10.1007/s10659-009-9230-4

    Article  MATH  Google Scholar 

  23. Léger, A., Miara, B.: The obstacle problem for shallow shells: curvilinear approach. Int. J. Numer. Anal. Model. Ser. B 2(1), 1–26 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Lions, J.L.: Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics, vol. 323. Springer, Berlin/New York (1973)

    MATH  Google Scholar 

  25. Martins, J., Marques, M.M. (eds.): Contact Mechanics. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  26. Raous, M., Jean, M., Moreau, J. (eds.): Contact Mechanics. Plenum, New York (1995)

    Google Scholar 

  27. Rodríguez-Arós, A.: Mathematical justification of an elastic elliptic membrane obstacle problem. C. R., Méc. 345(2), 153–157 (2017). doi:10.1016/j.crme.2016.10.014

    Article  Google Scholar 

  28. Rodríguez-Arós, A., Viaño, J.M.: A bending-stretching model in adhesive contact for elastic rods obtained by using asymptotic methods. Nonlinear Anal., Real World Appl. 22, 632–644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shillor, M. (ed.): Math. Comput. Model. Recent Advances in Contact Mechanics, 28(4–8), 1–534 (1998)

  30. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    MATH  Google Scholar 

  31. Trabucho, L., Viaño, J.M.: Mathematical modelling of rods. In: Handbook of Numerical Analysis, vol. IV, pp. 487–974. North-Holland, Amsterdam (1996)

    Google Scholar 

  32. Viaño, J.M.: The one-dimensional obstacle problem as approximation of the three-dimensional Signorini problem. Bull. Math. Soc. Sci. Math. Roum. 48(96)(2), 243–258 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Viaño, J.M., Rodríguez-Arós, Á., Sofonea, M.: Asymptotic derivation of quasistatic frictional contact models with wear for elastic rods. J. Math. Anal. Appl. 401(2), 641–653 (2013). doi:10.1016/j.jmaa.2012.12.064

    Article  MathSciNet  MATH  Google Scholar 

  34. Yan, G., Miara, B.: Mathematical justification of the obstacle problem in the case of piezoelectric plate. Asymptot. Anal. 96(3–4), 283–308 (2016). doi:10.3233/ASY-151339

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the reviewers of this paper for their valuable remarks and suggestions, which contributed to improve the original manuscript. This research has been partially supported by Ministerio de Economía, Industria y Competitividad under grant MTM2016-78718-P with the participation of FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Rodríguez-Arós.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Arós, Á. Models of Elastic Shells in Contact with a Rigid Foundation: An Asymptotic Approach. J Elast 130, 211–237 (2018). https://doi.org/10.1007/s10659-017-9638-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9638-1

Keywords

Mathematics Subject Classification (2010)

Navigation