Skip to main content
Log in

Potential Method in the Theory of Elasticity for Triple Porosity Materials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In the present paper the basic boundary value problems (BVPs) of the full coupled linear theory of elasticity for triple porosity materials are investigated by means of the potential method (boundary integral equation method) and some basic results of the classical theory of elasticity are generalized. In particular, the Green’s identities and the formula of Somigliana type integral representation of regular vector and regular (classical) solutions are presented. The representation of Galerkin type solution is obtained and the completeness of this solution is established. The uniqueness theorems for classical solutions of the internal and external BVPs are proved. The surface (single-layer and double-layer) and volume potentials are constructed and their basic properties are established. Finally, the existence theorems for classical solutions of the BVPs are proved by means of the potential method and the theory of singular integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdassah, D., Ershaghi, I.: Triple-porosity systems for representing naturally fractured reservoirs. SPE Form. Eval. 1, 113–127 (1986). SPE-13409-PA

    Article  Google Scholar 

  2. Al Ahmadi, H.A., Wattenbarger, R.A.: Triple-porosity models: one further step towards capturing fractured reservoirs heterogeneity. Saudi Aramco J. Technol. 2011, 52–65 (2011)

    Google Scholar 

  3. Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993)

    Article  ADS  Google Scholar 

  4. Bai, M., Roegiers, J.C.: Triple-porosity analysis of solute transport. J. Cantam. Hydrol. 28, 189–211 (1997)

    Google Scholar 

  5. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  6. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  MATH  Google Scholar 

  7. de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Burchuladze, T.V., Gegelia, T.G.: The Development of the Potential Methods in the Elasticity Theory. Metsniereba, Tbilisi (1985)

    MATH  Google Scholar 

  9. Burchuladze, T., Svanadze, M.: Potential method in the linear theory of binary mixtures for thermoelastic solids. J. Therm. Stresses 23, 601–626 (2000)

    Article  MathSciNet  Google Scholar 

  10. Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowin, S.C. (ed.): Bone Mechanics Handbook. Informa Healthcare USA Inc., New York (2008)

    Google Scholar 

  12. Cowin, S.C., Cardoso, L.: Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J. Biomech. 48, 842–854 (2015)

    Article  Google Scholar 

  13. Cowin, S.C., Gailani, G., Benalla, M.: Hierarchical poroelasticity: movement of interstitial fluid between levels in bones. Philos. Trans. R. Soc. Lond. A 367, 3401–3444 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gegelia, T., Jentsch, L.: Potential methods in continuum mechanics. Georgian Math. J. 1, 599–640 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gelet, R., Loret, B., Khalili, N.: Borehole stability analysis in a thermoporoelastic dual-porosity medium. Int. J. Rock Mech. Min. Sci. 50, 65–76 (2012)

    Article  Google Scholar 

  16. Gentile, M., Straughan, B.: Acceleration waves in nonlinear double porosity elasticity. Int. J. Eng. Sci. 73, 10–16 (2013)

    Article  Google Scholar 

  17. Hamed, E., Lee, Y., Jasiuk, I.: Multiscale modeling of elastic properties of cortical bone. Acta Mech. 213, 131–154 (2010)

    Article  MATH  Google Scholar 

  18. Ieşan, D.: Method of potentials in elastostatics of solids with double porosity. Int. J. Eng. Sci. 88, 118–127 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stresses 37, 1017–1036 (2014)

    Article  Google Scholar 

  20. Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30, 2268 (2003)

    ADS  Google Scholar 

  21. Khalili, N., Habte, M.A., Zargarbashi, S.: A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis. Comput. Geotech. 35, 872–889 (2008)

    Article  Google Scholar 

  22. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program Sci. Transl., Jerusalem (1965)

    MATH  Google Scholar 

  23. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)

    Google Scholar 

  24. Liu, C.Q.: Exact solution for the compressible flow equations through a medium with triple-porosity. Appl. Math. Mech. 2, 457–462 (1981)

    Article  MATH  Google Scholar 

  25. Liu, J.C., Bodvarsson, G.S., Wu, Y.S.: Analysis of pressure behaviour in fractured lithophysical reservoirs. J. Cantam. Hydrol. 62–63, 189–211 (2003)

    Article  Google Scholar 

  26. Mikhlin, S.G.: Multidimensional Singular Integrals and Integral Equations. Pergamon, Oxford (1965)

    MATH  Google Scholar 

  27. Moutsopoulos, K.N., Konstantinidis, A.A., Meladiotis, I., Tzimopoulos, Ch.D., Aifantis, E.C.: Hydraulic behavior and contaminant transport in multiple porosity media. Transp. Porous Media 42, 265–292 (2001)

    Article  Google Scholar 

  28. Pride, S.R., Berryman, J.G.: Linear dynamics of double-porosity dual-permeability materials I. Governing equations and acoustic attenuation. Phys. Rev. E 68, 036603 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Multiscale modeling of a fluid saturated medium with double porosity: relevance to the compact bone. J. Mech. Phys. Solids 60, 857–881 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  30. Scalia, A., Svanadze, M.: Potential method in the linear theory of thermoelasticity with microtemperatures. J. Therm. Stresses 32, 1024–1042 (2009)

    Article  Google Scholar 

  31. Scarpetta, E., Svanadze, M., Zampoli, V.: Fundamental solutions in the theory of thermoelasticity for solids with double porosity. J. Therm. Stresses 37, 727–748 (2014)

    Article  Google Scholar 

  32. Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)

    MATH  Google Scholar 

  33. Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  34. Straughan, B.: Convection with Local Thermal Non-Equilibrium and Microfluidic Effects. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  35. Straughan, B.: Waves and uniqueness in multi-porosity elasticity. J. Therm. Stresses 39, 704–721 (2016)

    Article  Google Scholar 

  36. Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica 49, 2099–2108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Svanadze, M.: Fundamental solutions in the theory of elasticity for triple porosity materials. Meccanica 51, 1825–1837 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Svanadze, M.: Plane waves, uniqueness theorems and existence of eigenfrequencies in the theory of rigid bodies with a double porosity structure. In: Albers, B., Kuczma, M. (eds.) Continuous Media with Microstructure, vol. 2, pp. 287–306. Springer Int. Publ., Switzerland (2016)

    Chapter  Google Scholar 

  39. Svanadze, M.: On the theory of viscoelasticity for materials with double porosity. Discrete Contin. Dyn. Syst., Ser. B 19, 2335–2352 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Svanadze, M., De Cicco, S.: Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity. Arch. Mech. 65, 367–390 (2013)

    MathSciNet  Google Scholar 

  41. Svanadze, M., Scalia, A.: Mathematical problems in the coupled linear theory of bone poroelasticity. Comput. Math. Appl. 66, 1554–1566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Svanadze, M., Scalia, A.: Potential method in the theory of thermoelasticity with microtemperatures for microstretch solids. Trans. Nanjing Univ. Aeronaut. Astronaut. 31, 159–163 (2014)

    Google Scholar 

  43. Vekua, I.N.: On metaharmonic functions. Proc. Tbil. Math. Inst. Acad. Sci. Georgian SSR. 12, 105–174 (1943) (Russian). Eng. Trans.: Lect. Notes TICMI 14, 1–62 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Warren, J., Root, P.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963)

    Article  Google Scholar 

  45. Wilson, R.K., Aifantis, E.C.: On the theory of consolidation with double porosity-I. Int. J. Eng. Sci. 20, 1009–1035 (1982)

    Article  MATH  Google Scholar 

  46. Wu, Y.S., Liu, H.H., Bodavarsson, G.S.: A triple-continuum approach for modelling flow and transport processes in fractured rock. J. Contam. Hydrol. 73, 145–179 (2004)

    Article  ADS  Google Scholar 

  47. Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Svanadze.

Additional information

This work was supported by Shota Rustaveli National Science Foundation (SRNSF) [Project \(\#\) FR/18/5-102/14].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svanadze, M. Potential Method in the Theory of Elasticity for Triple Porosity Materials. J Elast 130, 1–24 (2018). https://doi.org/10.1007/s10659-017-9629-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9629-2

Keywords

Mathematics Subject Classification (2010)

Navigation