Advertisement

Journal of Elasticity

, Volume 128, Issue 1, pp 115–145 | Cite as

On the Stress Field of a Nonlinear Elastic Solid Torus with a Toroidal Inclusion

  • Ashkan Golgoon
  • Arash YavariEmail author
Article

Abstract

In this paper we analyze the stress field of a solid torus made of an incompressible isotropic solid with a toroidal inclusion that is concentric with the solid torus and has a uniform distribution of pure dilatational finite eigenstrains. We use a perturbation analysis and calculate the residual stresses to the first order in the thinness ratio (the ratio of the radius of the generating circle and the overall radius of the solid torus). In particular, we show that the stress field inside the inclusion is not uniform. This is in contrast with the corresponding results for infinitely-long and finite circular cylindrical bars and spherical balls with cylindrical and spherical inclusions, respectively. We also show that for a solid torus of any size made of an incompressible linear elastic solid with an inclusion with uniform (infinitesimal) pure dilatational eigenstrains the stress inside the inclusion is not uniform.

Keywords

Finite eigenstrains Geometric mechanics Nonlinear elasticity Elastic torus Inclusion 

Mathematics Subject Classification (2000)

74B20 70G45 70H09 35Q74 74Fxx 

Notes

Acknowledgements

This work was partially supported by ARO W911NF-16-1-0064, AFOSR—Grant No. FA9550-12-1-0290 and NSF—Grant No. CMMI 1130856 and CMMI 1561578.

References

  1. 1.
    Argatov, I., Sevostianov, I.: Rigid toroidal inhomogeneity in an elastic medium. Int. J. Eng. Sci. 49(1), 61–74 (2011) CrossRefGoogle Scholar
  2. 2.
    Bilby, B.A., Lardner, L.R.T., Stroh, A.N.: Continuous distributions of dislocations and the theory of plasticity. In: Actes du IXe congrès international de mécanique appliquée, Bruxelles, 1956, vol. 8, pp. 35–44 (1957) Google Scholar
  3. 3.
    do Carmo, M.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser, Boston (1992). ISBN 1584883553 CrossRefzbMATHGoogle Scholar
  4. 4.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Golgoon, A., Yavari, A.: Nonlinear elastic inclusions in anisotropic solids (2016), submitted Google Scholar
  6. 6.
    Golgoon, A., Sadik, S., Yavari, A.: Circumferentially-symmetric finite eigenstrains in incompressible isotropic nonlinear elastic wedges. Int. J. Non-Linear Mech. 84, 116–129 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    Hill, J.M.: The finite inflation of a thick-walled elastic torus. Q. J. Mech. Appl. Math. 33(4), 471–490 (1980) ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Kang, H., Milton, G.W.: Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture. Arch. Ration. Mech. Anal. 188(1), 93–116 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, C., Schiavone, P.: A circular inhomogeneity subjected to non-uniform remote loading in finite plane elastostatics. Int. J. Non-Linear Mech. 42(8), 989–999 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Kim, C., Schiavone, P.: Designing an inhomogeneity with uniform interior stress in finite plane elastostatics. Acta Mech. 197(3–4), 285–299 (2008) CrossRefzbMATHGoogle Scholar
  11. 11.
    Kim, C., Vasudevan, M., Schiavone, P.: Eshelby’s conjecture in finite plane elastostatics. Q. J. Mech. Appl. Math. 61(1), 63–73 (2008) CrossRefzbMATHGoogle Scholar
  12. 12.
    Kirilyuk, V.: Stress concentration in an isotropic medium with an elastic toroidal inhomogeneity. Int. Appl. Mech. 24(1), 11–14 (1988) ADSGoogle Scholar
  13. 13.
    Krokhmal, P.: Exact solution of the displacement boundary-value problem of elasticity for a torus. J. Eng. Math. 44(4), 345–368 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4(1), 273–334 (1959) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kydoniefs, A.: Finite deformation of an elastic torus under rotation and inflation. Int. J. Eng. Sci. 4(2), 125–154 (1966) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kydoniefs, A.: The finite inflation of an elastic toroidal membrane. Int. J. Eng. Sci. 5(6), 477–494 (1967) CrossRefzbMATHGoogle Scholar
  17. 17.
    Kydoniefs, A., Spencer, A.: The finite inflation of an elastic torus. Int. J. Eng. Sci. 3(2), 173–195 (1965) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kydoniefs, A., Spencer, A.: The finit inflation of an elastic toroidal membrane of circular cross section. Int. J. Eng. Sci. 5(4), 367–391 (1967) CrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, L.: Solutions to the Eshelby conjectures. Proc. R. Soc. Lond. A 464, 573–594 (2008) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Dover Civil and Mechanical Engineering Series. Dover, New York (1983). ISBN 9780486678658 zbMATHGoogle Scholar
  21. 21.
    Ogden, R.W.: Non-linear Elastic Deformations (1997), Courier Corporation Google Scholar
  22. 22.
    Onaka, S.: Strain-free points near a doughnut-like inclusion with purely dilatational eigenstrains. Mech. Res. Commun. 30(6), 663–666 (2003) CrossRefzbMATHGoogle Scholar
  23. 23.
    Onaka, S.: Strain fields caused by doughnut-like and tubular inclusions with uniform eigenstrains. Mech. Res. Commun. 32(3), 316–322 (2005) CrossRefzbMATHGoogle Scholar
  24. 24.
    Onaka, S., Sato, H., Kato, M.: Elastic states of doughnut-like inclusions with uniform eigenstrains treated by averaged Eshelby tensors. Philos. Mag. Lett. 82(1), 1–7 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902 (2010) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pence, T.J., Tsai, H.: Swelling-induced microchannel formation in nonlinear elasticity. IMA J. Appl. Math. 70(1), 173–189 (2005) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pence, T.J., Tsai, H.: Swelling-induced cavitation of elastic spheres. Math. Mech. Solids 11(5), 527–551 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Petersen, P.: Riemannian Geometry, vol. 171. Springer, New York (2006) CrossRefzbMATHGoogle Scholar
  29. 29.
    Radi, E., Sevostianov, I.: Toroidal insulating inhomogeneity in an infinite space and related problems. Proc. R. Soc. Lond. A 472, 20150781 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    Rodin, G.: Eshelby’s inclusion problem for polygons and polyhedral. J. Mech. Phys. Solids 44(12), 1977–1995 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994) CrossRefGoogle Scholar
  32. 32.
    Ru, C., Schiavone, P., Sudak, L., Mioduchowski, A.: Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics. Int. J. Non-Linear Mech. 40(2), 281–287 (2005) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ru, C.-Q., Schiavone, P.: On the elliptic inclusion in anti-plane shear. Math. Mech. Solids 1(3), 327–333 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sadik, S., Yavari, A.: Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math. Mech. Solids (2015). doi: 10.1177/1081286515599458 Google Scholar
  35. 35.
    Simo, J., Marsden, J.: Stress tensors, Riemannian metrics and the alternative descriptions in elasticity. In: Trends and Applications of Pure Mathematics to Mechanics, pp. 369–383. Springer, Berlin (1984) CrossRefGoogle Scholar
  36. 36.
    Sozio, F., Yavari, A.: Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies. J. Mech. Phys. Solids 98, 12–48 (2017). ISSN 0022-5096. http://www.sciencedirect.com/science/article/pii/S0022509616302484. doi: 10.1016/j.jmps.2016.08.012. ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Stojanović, R., Djurić, S., Vujošević, L.: On finite thermal deformations. Arch. Mech. Stosow. 16, 103–108 (1964) MathSciNetGoogle Scholar
  38. 38.
    Takamizawa, K.: Stress-free configuration of a thick-walled cylindrical model of the artery: an application of Riemann geometry to the biomechanics of soft tissues. J. Appl. Mech. 58(3), 840–842 (1991) ADSCrossRefGoogle Scholar
  39. 39.
    Takamizawa, K., Matsuda, T.: Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57(2), 321–329 (1990) ADSCrossRefGoogle Scholar
  40. 40.
    Truesdell, C.: The physical components of vectors and tensors. Z. Angew. Math. Mech. 33(10–11), 345–356 (1953) MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wolfram Research, Inc. Mathematica. Version 11.0, Wolfram Research, Inc., Champaign (2016) Google Scholar
  42. 42.
    Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20(6), 781–830 (2010) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205(1), 59–118 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Yavari, A., Goriely, A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc. R. Soc. A 468(2148), 3902–3922 (2012) ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Yavari, A., Goriely, A.: Nonlinear elastic inclusions in isotropic solids. Proc. R. Soc. A 469(2160), 20130415 (2013) ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Yavari, A., Goriely, A.: The geometry of discombinations and its applications to semi-inverse problems in anelasticity. Proc. R. Soc. A 470(2169), 20140403 (2014) ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    Yavari, A., Goriely, A.: The twist-fit problem: finite torsional and shear eigenstrains in nonlinear elastic solids. Proc. R. Soc. Lond. A 471(2183), 20150596 (2015) ADSCrossRefGoogle Scholar
  48. 48.
    Yavari, A., Goriely, A.: On the stress singularities generated by anisotropic eigenstrains and the hydrostatic stress due to annular inhomogeneities. J. Mech. Phys. Solids 76, 325–337 (2015) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Yavari, A., Ozakin, A.: Covariance in linearized elasticity. Z. Angew. Math. Phys. 59(6), 1081–1110 (2008) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations