Advertisement

Journal of Elasticity

, Volume 127, Issue 2, pp 235–247 | Cite as

Elastocapillary Coiling of an Elastic Rod Inside a Drop

  • Hervé Elettro
  • Paul Grandgeorge
  • Sébastien NeukirchEmail author
Article

Abstract

Capillary forces acting at the surface of a liquid drop can be strong enough to deform small objects and recent studies have provided several examples of elastic instabilities induced by surface tension. We present such an example where a liquid drop sits on a straight fiber, and we show that the liquid attracts the fiber which thereby coils inside the drop. We derive the equilibrium equations for the system, compute bifurcation curves, and show the packed fiber may adopt several possible configurations inside the drop. We use the energy of the system to discriminate between the different configurations and find a intermittent regime between two-dimensional and three-dimensional solutions as more and more fiber is driven inside the drop.

Keywords

Capillarity Bifurcation Packing 

Mathematics Subject Classification

74K10 74F10 74G65 

Notes

Acknowledgements

We thank Camille Dianoux and Sinan Haliyo for their help on microscopy, and Arnaud Antkowiak for comments on the variational approach. The present work was supported by ANR grant ANR-09-JCJC-0022-01, ANR-14-CE07-0023-01, and ANR-13-JS09-0009. Financial support from ‘La Ville de Paris—Programme Émergence’ and CNRS, through a PEPS-PTI grant, is also gratefully acknowledged.

References

  1. 1.
    Adda-Bedia, M., Boudaoud, A., Boué, L., Debœuf, S.: Statistical distributions in the folding of elastic structures. J. Stat. Mech. Theory Exp. 2010(11), P11027 (2010) CrossRefGoogle Scholar
  2. 2.
    Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2004) Google Scholar
  3. 3.
    Arsuaga, J., Tan, R.K.Z., Vazquez, M., Sumners, D.W., Harvey, S.C.: Investigation of viral DNA packaging using molecular mechanics models. Biophys. Chem. 101–102, 475–484 (2002) CrossRefGoogle Scholar
  4. 4.
    Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells. Oxford University Press, London (2010) zbMATHGoogle Scholar
  5. 5.
    Bourgat, J.F., Le Tallec, P., Mani, S.: Modélisation et calcul des grands déplacements de tuyaux élastiques en flexion torsion. J. Méc. Théor. Appl. 7(4), 379–408 (1988) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, L., Yu, S., Wang, H., Xu, J., Liu, C., Chong, W.H., Chen, H.: General methodology of using oil-in-water and water-in-oil emulsions for coiling nanofilaments. J. Am. Chem. Soc. 135(2), 835–843 (2013) CrossRefGoogle Scholar
  7. 7.
    Cohen, A.E., Mahadevan, L.: Kinks, rings, and rackets in filamentous structures. Proc. Natl. Acad. Sci. USA 100(21), 12141–12146 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    de Gennes, P.G., Brochard-Wyard, F., Quere, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2003) zbMATHGoogle Scholar
  9. 9.
    Doedel, E., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I): bifurcation in finite dimensions. Int. J. Bifurc. Chaos Appl. Sci. Eng. 1(3), 493–520 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Domokos, G., Healey, T.: Hidden symmetry of global solutions in twisted elastic rings. J. Nonlinear Sci. 11, 47–67 (2001) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Duprat, C., Protiere, S., Beebe, A.Y., Stone, H.A.: Wetting of flexible fibre arrays. Nature 482(7386), 510–513 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    Elettro, H., Vollrath, F., Antkowiak, A., Neukirch, S.: Coiling of an elastic beam inside a disk: a model for spider-capture silk. Int. J. Non-Linear Mech. 75, 59–66 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    Elettro, H., Neukirch, S., Antkowiak, A.: Negative stiffness regimes and coiling morphology signatures in drop-on-coilable-fiber systems (2016). In preparation Google Scholar
  14. 14.
    Elettro, H., Neukirch, S., Vollrath, F., Antkowiak, A.: In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties. Proc. Natl. Acad. Sci. USA 113(22), 6143–6147 (2016) ADSCrossRefGoogle Scholar
  15. 15.
    Fargette, A., Neukirch, S., Antkowiak, A.: Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett. 112(13), 137802 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    Katzav, E., Adda-Bedia, M., Boudaoud, A.: A statistical approach to close packing of elastic rods and to DNA packaging in viral capsids. Proc. Natl. Acad. Sci. USA 103(50), 18900–18904 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    Kehrbaum, S., Maddocks, J.H.: Elastic rods, rigid bodies, quaternions and the last quadrature. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 355(1732), 2117–2136 (1997) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    LaMarque, J.C., Le, T.V., Harvey, S.C.: Packaging double-helical DNA into viral capsids. Biopolymers 73(3), 348–355 (2004) CrossRefGoogle Scholar
  19. 19.
    Leforestier, A., Livolant, F.: Structure of toroidal DNA collapsed inside the phage capsid. Proc. Natl. Acad. Sci. USA 106(23), 9157–9162 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    Lorenceau, É., Clanet, C., Quéré, D.: Capturing drops with a thin fiber. J. Colloid Interface Sci. 279(1), 192–197 (2004) CrossRefGoogle Scholar
  21. 21.
    Martel, R., Shea, H.R., Avouris, P.: Rings of single-walled carbon nanotubes. Nature 398(6725), 299 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    Neukirch, S., Henderson, M.E.: Classification of the spatial clamped elastica: symmetries and zoology of solutions. J. Elast. 68, 95–121 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Neukirch, S., Roman, B., de Gaudemaris, B., Bico, J.: Piercing a liquid surface with an elastic rod: buckling under capillary forces. J. Mech. Phys. Solids 55(6), 1212–1235 (2007) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B., Baroud, C.N.: Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98(15), 156103 (2007) ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Roman, B., Bico, J.: Elasto-capillarity: deforming an elastic structure with a liquid droplet. Phys. Condens. Matter 22(49), 493101 (2010) CrossRefGoogle Scholar
  26. 26.
    Steigmann, D.J., Faulkner, M.G.: Variational theory for spatial rods. J. Elast. 33(1), 1–26 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stoop, N., Najafi, J., Wittel, F.K., Habibi, M., Herrmann, H.J.: Packing of elastic wires in spherical cavities. Phys. Rev. Lett. 106, 214102 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    van der Heijden, G.H.M., Peletier, M.A., Planqué, R.: On end rotation for open rods undergoing large deformations. Q. Appl. Math. 65(2), 385–402 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Vetter, R., Wittel, F., Stoop, N., Herrmann, H.: Finite element simulation of dense wire packings. Eur. J. Mech. A, Solids 37, 160–171 (2013) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vollrath, F., Edmonds, D.T.: Modulation of the mechanical properties of spider silk by coating with water. Nature 340, 305–307 (1989) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hervé Elettro
    • 1
  • Paul Grandgeorge
    • 1
  • Sébastien Neukirch
    • 1
    Email author
  1. 1.Institut Jean Le Rond d’AlembertSorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190ParisFrance

Personalised recommendations