Skip to main content
Log in

Enhancing the Electro-Mechanical Response of Stacked Dielectric Actuators

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Dielectric polymer films subjected to an electric field reduce in thickness and expand in area. A pile up configuration of such films, also known as a stacked dielectric actuator, is capable of exhibiting contractive deformations while subjected to external tensile forces. This work analyzes the capabilities of the stacked actuator according to a new microscopically motivated approach which suggests that the macroscopic response is determined by four microscopic factors—the length of the polymer chains, the local behavior of the monomers, the intensity of the local dipole and the chain-density. With the aim of enhancing the actuators performance, a specific local behavior is assumed and the influence of the remaining three quantities is studied. It is shown that the actuation can be significantly improved with appropriate micro-structural changes. Interestingly, this work demonstrates that these micro-structural alterations depend on the envisaged application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blythe, T., Bloor, D.: Electrical Properties of Polymers, 2nd edn. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  2. Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C.C., Suo, Z., Aksay, I.A.: Dielectric elastomer actuators with elastomeric electrodes. Appl. Phys. Lett. 101(9), 091907 (2012)

    Article  ADS  Google Scholar 

  3. Cohen, N., deBotton, G.: The electromechanical response of polymer networks with long-chain molecules. Math. Mech. Solids 20(6), 721–728 (2015). doi:10.1177/1081286514550574

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, N., deBotton, G.: Electromechanical interplay in deformable dielectric elastomer networks. Phys. Rev. Lett. 116, 208303 (2016). doi:10.1103/PhysRevLett.116.208303

    Article  ADS  Google Scholar 

  5. Cohen, N., Dayal, K., deBotton, G.: Electroelasticity of polymer networks. J. Mech. Phys. Solids (2016). doi:10.1016/j.jmps.2016.03.022

    MathSciNet  Google Scholar 

  6. Cohen, N., Menzel, A., deBotton, G.: Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers. Proc. R. Soc., Math. Phys. Eng. Sci. 472(2186), 20150712 (2016). doi:10.1098/rspa.2015.0462

    Article  Google Scholar 

  7. Huang, C., Zhang, Q.M., deBotton, G., Bhattacharya, K.: All-organic dielectric-percolative three-component composite materials with high electromechanical response. Appl. Phys. Lett. 84, 4391–4393 (2004)

    Article  ADS  Google Scholar 

  8. Joglekar, M.M.: An energy-based approach to extract the dynamic instability parameters of dielectric elastomer actuators. J. Appl. Mech. 81(9), 091010 (2014)

    Article  ADS  Google Scholar 

  9. Joglekar, M.M.: Dynamic-instability parameters of dielectric elastomer actuators with equal biaxial prestress. AIAA J. 53(10), 3129–3133 (2015)

    Article  ADS  Google Scholar 

  10. Kofod, G.: The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J. Phys. D, Appl. Phys. 41(21), 215405 (2008)

    Article  ADS  Google Scholar 

  11. Kovacs, G., Düring, L.: Contractive Tension Force Stack Actuator Based on Soft Dielectric EAP. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, p. 72870A. SPIE, Bellingham (2009)

    Google Scholar 

  12. Kovacs, G., Lochmatter, P., Wissler, M.: An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater. Struct. 16(2), S306 (2007)

    Article  ADS  Google Scholar 

  13. Kovacs, G., Düring, L., Michel, S., Terrasi, G.: Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators A, Phys. 155(2), 299–307 (2009)

    Article  Google Scholar 

  14. Lotz, P., Matysek, M., Schlaak, H.F.: Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16(1), 58–66 (2011)

    Article  Google Scholar 

  15. Madsen, F.B., Daugaard, A.E., Hvilsted, S., Skov, A.L.: The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 37(5), 378–413 (2016). doi:10.1002/marc.201500576

    Article  Google Scholar 

  16. McKay, T., O’Brien, B., Calius, E., Anderson, L.: An integrated, self-priming dielectric elastomer generator. Appl. Phys. Lett. 97, 062911 (2010)

    Article  ADS  Google Scholar 

  17. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100 %. Science 287(5454), 836–839 (2000)

    Article  ADS  Google Scholar 

  18. Rudykh, S., Lewinstein, A., Uner, G., deBotton, G.: Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics. Appl. Phys. Lett. 102(15), 151905 (2013)

    Article  ADS  Google Scholar 

  19. Shmuel, G.: Manipulating torsional motions of soft dielectric tubes. J. Appl. Phys. 117(17), 174902 (2015)

    Article  ADS  Google Scholar 

  20. Stockmayer, W.H.: Dielectric dispersion in solutions of flexible polymers. Pure Appl. Chem. 15(539), 2816 (1967)

    Google Scholar 

  21. Suo, Z., Zhu, J.: Dielectric elastomers of interpenetrating networks. Appl. Phys. Lett. 95(23), 232909 (2009). http://scitation.aip.org/content/aip/journal/apl/95/23/10.1063/1.3272685. doi:10.1063/1.3272685

    Article  ADS  Google Scholar 

  22. Treloar, L.R.G.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  23. Tutcuoglu, A., Majidi, C.: Energy harvesting with stacked dielectric elastomer transducers: nonlinear theory, optimization, and linearized scaling law. Appl. Phys. Lett. 105(24), 241905 (2014). http://scitation.aip.org/content/aip/journal/apl/105/24/10.1063/1.4904473. doi:10.1063/1.4904473

    Article  ADS  Google Scholar 

  24. Zhang, X., Lowe, C., Jahne, B., Kovacs, G.: Dielectric elastomers in actuator technology. Adv. Eng. Mater. 7(5), 361–367 (2005). doi:10.1002/adem.200500066

    Article  Google Scholar 

  25. Zhao, X., Suo, Z.: Electromechanical instability in semicrystalline polymers. Appl. Phys. Lett. 95(3), 031904 (2009). http://scitation.aip.org/content/aip/journal/apl/95/3/10.1063/1.3186078. doi:10.1063/1.3186078

    Article  ADS  Google Scholar 

  26. Zhao, X., Suo, Z.: Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104, 178302 (2010). doi:10.1103/PhysRevLett.104.178302

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges G. deBotton for insightful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noy Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, N. Enhancing the Electro-Mechanical Response of Stacked Dielectric Actuators. J Elast 127, 103–113 (2017). https://doi.org/10.1007/s10659-016-9598-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9598-x

Keywords

Mathematics Subject Classification

Navigation