Advertisement

Journal of Elasticity

, Volume 126, Issue 2, pp 155–171 | Cite as

Effect of Material Nonlinearity on Spatial Buckling of Nanorods and Nanotubes

  • Prakhar Gupta
  • Ajeet KumarEmail author
Article

Abstract

We show the importance of incorporating material nonlinearity for accurate determination of spatial buckling of nanorods and nanotubes. Both the nanorods and nanotubes are modeled as a special Cosserat rod whose nonlinear material laws are obtained using the recently proposed helical Cauchy-Born rule. We first present Euler buckling of solid diamond nanorods whose normalized buckling load, obtained from fully atomistic calculations, exhibits an interesting trend. The buckling load starts from unity at large aspect ratio of the nanorod, then as the aspect ratio is decreased, the buckling load increases slowly and finally decreases rapidly. We attribute this trend to material nonlinearity of the nanorod’s core at large compressive strain. We also discuss how surface stress affects buckling in nanorods. We then present the effect of compression and twist on buckling of single-walled carbon nanotubes. Interestingly, for highly twisted nanotubes, fully atomistic calculations show the first buckled mode to be different from a typical Euler buckling mode. Both the observations about nanorods and nanotubes are accurately replicated in the finite element special Cosserat rod simulation when the material nonlinearity is also incorporated. However, the simulation results exhibit completely different trend when only linear material laws are incorporated.

Keywords

Cauchy-Born rule Special Cosserat rod Elastic constitutive modeling Surface stress Euler buckling 

Mathematics Subject Classification

74B20 74A25 74Q15 

Notes

Acknowledgements

P. Gupta acknowledges the financial support received from DST-INSPIRE fellowship and A. Kumar acknowledges the support from SERB, India through the grant YSS/2014/000023.

References

  1. 1.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995) CrossRefzbMATHGoogle Scholar
  2. 2.
    Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bertails, F., Audoly, B., Cani, M.P., Querleux, B., Leroy, F., Lévêque, J.L.: Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25, 1180–1187 (2006) CrossRefGoogle Scholar
  4. 4.
    Bozec, L., van der Heijden, G., Horton, M.: Collagen fibrils: nanoscale ropes. Biophys. J. 92, 70–75 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990) ADSCrossRefGoogle Scholar
  6. 6.
    Buehler, M., Kong, Y., Gao, H.: Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245–249 (2004) CrossRefGoogle Scholar
  7. 7.
    Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966) ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    Fang, C., Kumar, A., Mukherjee, S.: Finite element analysis of carbon nanotubes based on a rod model including in-plane cross-sectional deformation. Int. J. Solids Struct. 50, 49–56 (2013) CrossRefGoogle Scholar
  11. 11.
    Goriely, A., Tabor, M.: Spontaneous helix hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    Gould, T., Burton, D.A.: A Cosserat rod model with microstructure. New J. Phys. 8, 1–17 (2006) CrossRefGoogle Scholar
  13. 13.
    Goyal, S., Perkins, N.C., Lee, C.L.: Non-linear dynamic intertwining of rods with self-contact. Int. J. Non-Linear Mech. 43, 65–73 (2008) ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hakobyan, Ye., Tadmor, E.B., James, R.D.: Objective quasicontinuum approach for rod problems. Phys. Rev. B 86, 245435 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    Healey, T.J.: Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 7, 405–420 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Healey, T.J., Papadopoulos, C.M.: Bifurcation of hemitropic elastic rods under axial thrust. Q. Appl. Math. 71, 729–753 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    James, R.D.: Objective structures. J. Mech. Phys. Solids 54, 2354–2390 (2006) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Jing, G.Y., Duan, H., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    Kumar, A., Healey, T.J.: A generalized computational approach to stability of static equilibria of nonlinearly elastic rods in the presence of constraints. Comput. Methods Appl. Mech. Eng. 199, 1805–1815 (2010) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kumar, A., Mukherjee, S., Paci, J.T., Chandraseker, K., Schatz, G.C.: A rod model for three dimensional deformations of single-walled carbon nanotubes. Int. J. Solids Struct. 48, 2849–2858 (2011) CrossRefGoogle Scholar
  22. 22.
    Kumar, A., Kumar, S., Gupta, P.: A helical Cauchy-Born rule for special Cosserat rod modeling of nano and continuum rods. J. Elast. 124, 81–106 (2016) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Liang, H., Upamanyu, M., Huang, H.: Size dependent elasticity of nanowires: nonlinear effects. Phys. Rev. B 71, 241403 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J., Meguid, S.A.: Nanomechanics of single and multiwalled carbon nanotubes. Phys. Rev. B 69, 115429 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    Liu, J., Huang, J., Su, T., Bertoldi, K., Clarke, D.R.: Structural transition from helices to hemihelices. PLoS ONE 9, e93183 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    Manning, R.S., Maddocks, J.H., Kahn, J.D.: A continuum rod model of sequence-dependent DNA structure. J. Chem. Phys. 105, 5626 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    Miller, R., Shenoy, V.B.: Size-dependent elastic properties of nano-sized structural elements. Nanotechnology 11, 139–147 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    On, B.B., Altus, E., Tadmor, E.B.: Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids Struct. 47, 1243–1252 (2010) CrossRefzbMATHGoogle Scholar
  29. 29.
    Pantano, A., Boyce, M.C., Parks, D.M.: Nonlinear structural mechanics based modeling of carbon nanotube deformation. Phys. Rev. Lett. 91, 145504 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    Park, H.S.: Surface stress effects on the critical buckling strains of silicon nanowires. Compos. Mater. Sci. 51, 396–401 (2012) CrossRefGoogle Scholar
  31. 31.
    Park, H.S., Klein, P.A., Wagner, G.J.: A surface Cauchy-Born model for nanoscale materials. Int. J. Numer. Methods Eng. 68, 1072–1095 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    Tang, W., Lagadec, P., Gould, D., Wan, T.R., Zhai, J., How, T.: A realistic elastic rod model for real-time simulation of minimally invasive vascular interventions. Vis. Comput. 26, 1157–1165 (2010) CrossRefGoogle Scholar
  34. 34.
    Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Wang, G.F., Feng, X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D, Appl. Phys. 42, 155411 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997) CrossRefGoogle Scholar
  38. 38.
    Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Applied MechanicsIIT DelhiNew DelhiIndia

Personalised recommendations