Journal of Elasticity

, Volume 120, Issue 2, pp 129–160 | Cite as

Hyperelastic Energy Densities for Soft Biological Tissues: A Review

Article

Abstract

Many soft tissues are naturally made of a matrix and fibres that present some privileged directions. They are known to support large reversible deformations. The mechanical behaviour of these tissues highlights different phenomena as hysteresis, stress softening or relaxation. A hyperelastic constitutive equation is typically the basis of the model that describes the behaviour of the material. The hyperelastic constitutive equation can be isotropic or anisotropic, it is generally expressed by means of strain components or strain invariants. This paper proposes a review of these constitutive equations.

Keywords

Hyperelasticity Anisotropy 

Mathematics Subject Classification

74B20 

References

  1. 1.
    Abraham, A.C., Moyer, J.T., Villegas, D.F., Odegard, G.M., Haut Donahue, T.L.: Hyperelastic properties of human meniscal attachments. J. Biomech. 44, 413–418 (2011)Google Scholar
  2. 2.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series vol. 55 (1964)Google Scholar
  3. 3.
    Agoras, M., Lopez-Pamies, O., Ponte Castañeda, P.: A general hyperelastic model for incompressible fiber-reinforced elastomers. J. Mech. Phys. Solids 57, 268–286 (2009)Google Scholar
  4. 4.
    Alastrué, V., Peña, E., Martinez, M.A., Doblaré, M.: Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J. Biomech. 41, 3038–3045 (2008)Google Scholar
  5. 5.
    Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: Anisotropic microsphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57, 178–203 (2009)Google Scholar
  6. 6.
    Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: On the use of the bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37, 700–706 (2010)Google Scholar
  7. 7.
    Arnoux, P.J.: Modélisation des ligaments des membres porteurs. Ph.D. thesis, Université de la Méditerranée (2000)Google Scholar
  8. 8.
    Arnoux, P.J., Chabrand, P., Jean, M., Bonnoit, J.: A viscohyperelastic model with damage for the knee ligaments under dynamic constraints. Comput. Methods Biomech. Biomed. Eng. 5, 167–174 (2002)Google Scholar
  9. 9.
    Arruda, E.M., Boyce, M.C.: A three dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)Google Scholar
  10. 10.
    Ateshian, G.A.: Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J. Biomech. Eng. 129, 240–249 (2007)Google Scholar
  11. 11.
    Ateshian, G.A., Costa, K.D.: A frame-invariant formulation of fung elasticity. J. Biomech. 42, 781–785 (2009)Google Scholar
  12. 12.
    Azar, F.S., Metaxas, D.N., Schnall, M.D.: A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad. Radiol. 8, 965–975 (2001)Google Scholar
  13. 13.
    Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196, 3070–3078 (2007)Google Scholar
  14. 14.
    Ball, J.M.: Convexity conditions and existence theorems in non-linear elasticity. Arch. Ration. Mech. Anal. 63, 557–611 (1977)Google Scholar
  15. 15.
    Ball, J.M.: Constitutive equalities and existence theorems in elasticity. In: Knops, R.J. (ed.) Symposium on Non-well Posed Problems and Logarithmic Convexity. Lecture Notes in Math., vol. 316. Springer, Berlin (1977)Google Scholar
  16. 16.
    Balzani, D., Neff, P., Schröder, J., Holzapfel, G.A.: A polyconvex framework for soft biological tissues. Adjustement to experimental data. Int. J. Solids Struct. 43, 6052–6070 (2006)Google Scholar
  17. 17.
    Balzani, D., Schröder, J., Gross, D.: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater. 2, 609–618 (2006)Google Scholar
  18. 18.
    Balzani, D., Brands, D., Klawonn, A., Rheinbach, O., Schröder, J.: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Arch. Appl. Mech. 80, 479–488 (2010)Google Scholar
  19. 19.
    Basciano, C.A., Kleinstreuer, C.: Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall. J. Biomech. Eng. 131, 1–11 (2009)Google Scholar
  20. 20.
    Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)Google Scholar
  21. 21.
    Beatty, M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2004)Google Scholar
  22. 22.
    Bell, J.: The Experimental Foundations of Solid Mechanics, Mechanics of Solids. Springer, Berlin (1984)Google Scholar
  23. 23.
    Bilgili, E.: Restricting the hyperelastic models for elastomers based on some thermodynamical, mechanical and empirical criteria. J. Elastomers Plast. 36, 159–175 (2004)Google Scholar
  24. 24.
    Billar, K.L., Sacks, M.S.: Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II—a structural constitutive model. J. Biomech. Eng. 122, 327–335 (2000)Google Scholar
  25. 25.
    Bischoff, J.E., Arruda, E.M., Grosh, K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570–579 (2002)Google Scholar
  26. 26.
    Bischoff, J.E., Arruda, E.M., Grosh, K.: Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. J. Appl. Mech. 69, 198–201 (2002)Google Scholar
  27. 27.
    Bischoff, J.E., Arruda, E.M., Grosh, K.: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model. Mechanobiol. 3, 56–65 (2004)Google Scholar
  28. 28.
    Bischoff, J.E.: Continuous versus discrete (invariant) representations of fibruous structure for modeling non-linear anisotropic soft tissue behavior. Int. J. Non-Linear Mech. 41, 167–179 (2006)Google Scholar
  29. 29.
    Boehler, J.: Applications of Tensor Functions in Solid Mechanics. CISM Courses and Lectures, vol. 292, pp. 13–30. Springer, Berlin (1987)Google Scholar
  30. 30.
    Boehler, J.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. J. Appl. Math. Mech. 59, 157–167 (1979)Google Scholar
  31. 31.
    Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162, 151–164 (1998)Google Scholar
  32. 32.
    Bose, K., Dorfmann, A.: Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod. Int. J. Non-Linear Mech. 44, 42–50 (2009)Google Scholar
  33. 33.
    Boubaker, M.B., Haboussi, M., Ganghoffer, J.F., Aletti, P.: Finite element simulation of interactions between pelvic organs: predictive model of the prostate motion in the context of radiotherapy. J. Biomech. 42, 1862–1868 (2009)Google Scholar
  34. 34.
    Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)Google Scholar
  35. 35.
    Brown, L.W., Smith, L.M.: A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers. J. Eng. Mater. Technol. 133, 1–13 (2011)Google Scholar
  36. 36.
    Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003)Google Scholar
  37. 37.
    Cacho, F., Elbischger, P., Rodriguez, J., Doblaré, M., Holzapfel, G.: A constitutive model for fibrous tissue sconsidering collagen fiber crimp. Int. J. Non-Linear Mech. 42, 391–402 (2007)Google Scholar
  38. 38.
    Calvo, B., Peña, E., Martins, P., Mascarenhas, T., Doblaré, M., Natal Jorge, R.M., Ferreira, A.: On modelling damage process in vaginal tissue. J. Biomech. 42, 642–651 (2009)Google Scholar
  39. 39.
    Calvo, B., Ramirez, A., Alonso, A., Grasa, J., Soteras, F., Osta, R., Muñoz, M.J.: Passive non linear elastic behaviour of skeletal muscle: experimental results and model formulation. J. Biomech. 43, 318–325 (2010)Google Scholar
  40. 40.
    Caner, F.C., Guo, Z., Moran, B., Bazant, Z.P., Carol, I.: Hyperelastic anisotropic microplane constitutive model for annulus fibrosus. Trans. Am. Soc. Mech. Eng. 129, 1–10 (2007)Google Scholar
  41. 41.
    Carboni, M., Desch, G.W., Weizsacker, H.W.: Passive mechanical properties of porcine left circumflex artery and its mathematical description. Med. Eng. Phys. 29, 8–16 (2007)Google Scholar
  42. 42.
    Chagnon, G., Marckmann, G., Verron, E.: A comparison of the physical model of Arruda–Boyce with the empirical Hart–Smith model and the Gent model. Rubber Chem. Technol. 77, 724–735 (2004)Google Scholar
  43. 43.
    Chagnon, G., Gaudin, V., Favier, D., Orgeas, L., Cinquin, P.: An osmotically inflatable seal to treat endoleaks of type 1. J. Mech. Med. Biol. 12, 1250070 (2012)Google Scholar
  44. 44.
    Chen, L., Yin, F.C.P., May-Newman, K.: The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 126, 244–251 (2004)Google Scholar
  45. 45.
    Chen, H., Zhao, X., Lu, X., Kassab, G.: Nonlinear micromechanics of soft tissues. Int. J. Non-Linear Mech. 56, 79–85 (2013)Google Scholar
  46. 46.
    Cheng, T., Dai, C., Gan, R.Z.: Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35, 305–314 (2007)Google Scholar
  47. 47.
    Cheng, T., Gan, R.Z.: Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis. Biomech. Model. Mechanobiol. 7, 387–394 (2008)Google Scholar
  48. 48.
    Choi, H.S., Vito, R.P.: Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112, 153–159 (1990)Google Scholar
  49. 49.
    Chuong, C.J., Fung, Y.C.: Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105(3), 268–274 (1983)Google Scholar
  50. 50.
    Ciarletta, P., Izzo, I., Micera, S., Tendick, F.: Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. J. Mech. Behav. Biomed. Mater. 4, 1359–1368 (2011)Google Scholar
  51. 51.
    Costa, K.D., Hunter, P.J., Waldman, L.K., Guccione, J.M., Mc Culloc, A.: A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part II—prolate-spherical coordinates. J. Biomech. Eng. 118, 464–472 (1996)Google Scholar
  52. 52.
    Criscione, J.C., Douglas, A.S., Hunter, W.C.: Physically based strain invariants set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49, 871–891 (2001)Google Scholar
  53. 53.
    Criscione, J.C., Mc Culloch, A.D., Hunter, W.C.: Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family. J. Mech. Phys. Solids 50, 1691–1702 (2002)Google Scholar
  54. 54.
    deBotton, G., Hariton, I., Socolsky, E.A.: Neo-Hookean fiber-reinforced composites in finite elasticity. J. Mech. Phys. Solids 54, 533–559 (2006)Google Scholar
  55. 55.
    deBotton, G., Shmuel, G.: Mechanics of composites with two families of finitely extensible fibers undergoing large deformations. J. Mech. Phys. Solids 57, 1165–1181 (2009)Google Scholar
  56. 56.
    Delfino, A., Stergiopulos, N., Moore, J.E. Jr, Meister, J.J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30(8), 777–786 (1997)Google Scholar
  57. 57.
    Demiray, H.: A note on the elasticity of soft biological tissues. J. Biomech. 5, 309–311 (1972)Google Scholar
  58. 58.
    Demiray, H., Weizsacker, H.W., Pascale, K., Erbay, H.: A stress strain relation for a rat abdominal aorta. J. Biomech. 21, 369–374 (1988)Google Scholar
  59. 59.
    Demirkoparan, H., Pence, T.: Swelling of an internally pressurized nonlinearly elastic tube with fiber reinforcing. Int. J. Solids Struct. 44, 4009–4029 (2007)Google Scholar
  60. 60.
    Demirkoparan, H., ans, T.J.P., Wineman, A.: On dissolution and reassembly of filamentary reinforcing networks in hyperelastic materials. Proc. R. Soc. A 465, 867–894 (2009)Google Scholar
  61. 61.
    Destrade, M., Gilchrist, M.D., Prikazchikov, D.A., Saccomandi, G.: Surface instability of sheared soft tissues. J. Biomech. Eng. 130, 1–6 (2008). 061007Google Scholar
  62. 62.
    Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67, 17–21 (2000)Google Scholar
  63. 63.
    Dorfmann, A.L., Woods, W.A. Jr., Trimmer, B.A.: Muscle performance in a soft-bodied terrestrial crawler: constitutive modeling of strain-rate dependency. J. R. Soc. Interface 5, 349–362 (2008)Google Scholar
  64. 64.
    Doyle, M.G., Tavoularis, S., Bourgault, Y.: Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study. J. Biomech. Eng. 132, 041006 (2010)Google Scholar
  65. 65.
    Driessen, N.J.B., Bouten, C.V.C., Baaijens, F.P.T.: A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomed. Eng. 124, 494–503 (2005)Google Scholar
  66. 66.
    Ebbing, V., Schröder, J., Neff, P.: Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Arch. Appl. Mech. 79, 651–657 (2009)Google Scholar
  67. 67.
    Ehret, A.E., Itskov, M.: A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J. Mater. Sci. 42, 8853–8863 (2007)Google Scholar
  68. 68.
    Einstein, D.R., Freed, A.D., Stander, N., Fata, B., Vesel, I.: Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33, 1819–1830 (2005)Google Scholar
  69. 69.
    Epstein, E.H., Munderloh, N.H.: Isolation and characterisation of cnbr peptides of human [α 1(iii)]3 collagen and tissue distribution [α 1(i)]2 α 2 and [α 1(iii)]3 collagen. J. Biol. Chem. 250, 9304–9312 (1975)Google Scholar
  70. 70.
    Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. Arch. Ration. Mech. Anal. 3, 281–301 (1954)Google Scholar
  71. 71.
    Federico, S., Grillo, A., Imatani, S., Giaquinta, G., Herzog, W.: An energetic approach to the analysis of anisotropic hyperelastic materials. Int. J. Eng. Sci. 46, 164–181 (2008)Google Scholar
  72. 72.
    Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013)Google Scholar
  73. 73.
    Flory, P.J.: Statistical Mechanics of Chain Molecules (1969)Google Scholar
  74. 74.
    Flynn, C., Rubin, M.B.: An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66–76 (2012)Google Scholar
  75. 75.
    Freed, A.D., Einstein, D.R., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves. Biomech. Model. Mechanobiol. 4, 100–117 (2005)Google Scholar
  76. 76.
    Freed, A.D., Einstein, D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)Google Scholar
  77. 77.
    Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620–H631 (1979)Google Scholar
  78. 78.
    Fung, Y.C., Liu, S., Zhou, J.: Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J. Biomech. Eng. 115, 453–459 (1993)Google Scholar
  79. 79.
    Galle, B., Ouyang, H., Shi, R., Nauman, E.: A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. J. Biomech. 43, 2839–2843 (2010)Google Scholar
  80. 80.
    Garcia, J.J., Cortes, D.H.: A nonlinear biphasic viscohyperelastic model for articular cartilage. J. Biomech. 39, 2991–2998 (2006)Google Scholar
  81. 81.
    Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004)Google Scholar
  82. 82.
    Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforcedcomposites at finite strains: continuum basis, algorithmic formulationand finite element implementation. Comput. Mech. 29, 340–360 (2002)Google Scholar
  83. 83.
    Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)Google Scholar
  84. 84.
    Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)Google Scholar
  85. 85.
    Ghaemi, H., Behdinan, K., Spence, A.D.: In vitro technique in estimation of passive mechanical properties of bovine heart. Part II. Constitutive relation and finite element analysis. Med. Eng. Phys. 31, 83–91 (2009)Google Scholar
  86. 86.
    Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012)Google Scholar
  87. 87.
    Girard, M.J.A., Downs, J.C., Burgoyne, C.F., Francis Suh, J.-K.: Peripapillary and posterior scleral mechanics—Part I: development of an anisotropic hyperelastic constitutive model. J. Biomech. Eng. 131, 051011 (2009)Google Scholar
  88. 88.
    Göktepe, S., Acharya, S.N.S., Wong, J., Kuhl, E.: Computational modeling of passive myocardium. Int. J. Numer. Methods Biomed. Eng. 27, 1–12 (2011)Google Scholar
  89. 89.
    Gras, L.L., Mitton, D., Viot, P., Laporte, S.: Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J. Mech. Behav. Biomed. Mater. 15, 131–140 (2012)Google Scholar
  90. 90.
    Groves, R.B., Coulman, S.A., Birchall, J.C., Evans, S.L.: An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013)Google Scholar
  91. 91.
    Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54, 1952–1971 (2006)Google Scholar
  92. 92.
    Guo, Z.Y., Peng, X.Q., Moran, B.: Large deformation response of a hyperelastic fibre reinforced composite: theoretical model and numerical validation. Composites, Part A, Appl. Sci. Manuf. 38, 1842–1851 (2007)Google Scholar
  93. 93.
    Guo, Z.Y., Peng, X.Q., Moran, B.: Mechanical response of neo-Hookean fiber reinforced incompressible nonlinearly elastic solids. Int. J. Solids Struct. 44, 1949–1969 (2007)Google Scholar
  94. 94.
    Harb, N., Labed, N., Domaszewski, M., Peyraut, F.: A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization. Comput. Methods Appl. Mech. Eng. 200, 208–215 (2011)Google Scholar
  95. 95.
    Harrison, S., Bush, M., Petros, P.: Towards a novel tensile elastometer for soft tissue. Int. J. Mech. Sci. 50, 626–640 (2008)Google Scholar
  96. 96.
    Hart-Smith, L.J.: Elasticity parameters for finite deformations of rubber-like materials. Z. Angew. Math. Phys. 17, 608–626 (1966)Google Scholar
  97. 97.
    Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001)Google Scholar
  98. 98.
    Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40, 2767–2791 (2003)Google Scholar
  99. 99.
    Haslach, H.W.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 3, 172–189 (2005)Google Scholar
  100. 100.
    Helfenstein, J., Jabareen, M., Mazza, E., Govindjee, S.: On non-physical response in models for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 47, 2056–2061 (2010)Google Scholar
  101. 101.
    Hernandez, B., Peña, E., Pascual, G., Rodriguez, M., Calvo, B., Doblaré, M., Bellon, J.M.: Mechanical and histological characterization of the abdominal muscle. a previous step to modelling hernia surgery. J. Mech. Behav. Biomed. Mater. 4, 392–404 (2011)Google Scholar
  102. 102.
    Hollingsworth, N.T., Wagner, D.R.: Modeling shear behavior of the annulus fibrosus. J. Mech. Behav. Biomed. Mater. 4, 1103–1114 (2011)Google Scholar
  103. 103.
    Holmes, M., Mow, V.C.: The non-linear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990)Google Scholar
  104. 104.
    Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)Google Scholar
  105. 105.
    Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A, Solids 21, 441–463 (2002)Google Scholar
  106. 106.
    Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: Comparison of multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126, 264–275 (2004)Google Scholar
  107. 107.
    Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol., Heart Circ. Physiol. 289, 2048–2058 (2005)Google Scholar
  108. 108.
    Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interactionwith stents: computational assessment of parametric stent design. J. Biomech. Eng. 127, 166–180 (2005)Google Scholar
  109. 109.
    Holzapfel, G.A., Mulvihill, J.J., Cunnane, E.M., Walsh, M.T.: Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomath. 47, 859–869 (2014)Google Scholar
  110. 110.
    Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)Google Scholar
  111. 111.
    Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005)Google Scholar
  112. 112.
    Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012)Google Scholar
  113. 113.
    Hostettler, A., George, D., Rémond, Y., Nicolau, S.A., Soler, L., Marescaux, J.: Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput. Methods Programs Biomed. 100, 149–157 (2010)Google Scholar
  114. 114.
    Humphrey, J.D., Yin, F.C.P.: On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudo strain-energy approach. J. Biomech. Eng. 109, 298–304 (1987)Google Scholar
  115. 115.
    Humphrey, J.D., Strumph, R.K., Yin, F.C.P.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 15, 1413–1418 (1990)Google Scholar
  116. 116.
    Humphrey, J.D.: Mechanics of arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)Google Scholar
  117. 117.
    Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues and Organs. Springer, New York (2002)Google Scholar
  118. 118.
    Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3–46 (2003)Google Scholar
  119. 119.
    Hurschler, C., Loitz-Ramage, B., Vanderby, R. Jr: A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 119, 392–399 (1997)Google Scholar
  120. 120.
    Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004)Google Scholar
  121. 121.
    Itskov, M., Ehret, A.E., Mavrilas, D.: A polyconvex anisotropic strain energy function for soft collagenous tissues. Biomech. Model. Mechanobiol. 5, 17–26 (2006)Google Scholar
  122. 122.
    Jemiolo, S., Telega, J.J.: Transversely isotropic materials undergoing large deformations and application to modelling soft tissues. Mech. Res. Commun. 28, 397–404 (2001)Google Scholar
  123. 123.
    Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Eng. 185, 225–243 (2000)Google Scholar
  124. 124.
    Kalita, P., Schaefer, R.: Mechanical models of artery walls. Arch. Comput. Methods Eng. 15, 1–36 (2008)Google Scholar
  125. 125.
    Karsaj, I., Sansour, C., Soric, J.: The modelling of fibre reorientation in soft tissue. Biomech. Model. Mechanobiol. 8, 359–370 (2009)Google Scholar
  126. 126.
    Kastelic, J., Palley, I., Baer, E.: A structural mechanical model for tendon crimping. J. Biomech. 13, 887 (1980)Google Scholar
  127. 127.
    Kaster, T., Sack, I., Samani, A.: Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44, 1158–1163 (2011)Google Scholar
  128. 128.
    Kas’yanov, V.A., Rachev, A.I.: Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech. Compos. Mater. 16, 76–80 (1990)Google Scholar
  129. 129.
    Kloczkowski, A.: Application of statistical mechanics to the analysis of various physicalproperties of elastomeric networks—a review. Polymer 43, 1503–1525 (2002)Google Scholar
  130. 130.
    Kloppel, T., Wall, W.A.: A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10, 445–459 (2011)Google Scholar
  131. 131.
    Knowles, J.K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solid. Int. J. Fract. 13, 611–639 (1977)Google Scholar
  132. 132.
    Kratky, O., Porod, G.: Röntgenuntersuchungen gelöster fadenmoleküle. Recl. Trav. Chim. 68, 1106–1122 (1949)Google Scholar
  133. 133.
    Kroon, M., Holzapfel, G.A.: A new constitutive model for multilayered collagenous tissues. J. Biomech. 41, 2766–2771 (2008)Google Scholar
  134. 134.
    Kuhl, E., Ramm, E.: Microplane modelling of cohesive frictional materials. Eur. J. Mech. A, Solids 19, S121–S143 (2000)Google Scholar
  135. 135.
    Kuhl, E., Garikipati, K., Arruda, E.M., Grosh, K.: Remodeling of biological tissue: mechanically induced reorientation of atransversely isotropic chain network. J. Mech. Phys. Solids 53, 1552–1573 (2005)Google Scholar
  136. 136.
    Kuhl, E., Menzel, A., Garikipati, K.: On the convexity of transversely isotropic chain network models. Philos. Mag. 86, 3241–3258 (2006)Google Scholar
  137. 137.
    Kuhn, W., Grün, F.: Beziehunger zwichen elastischen konstanten und dehnungsdoppelbrechung hochelastischerstoffe. Kolloideitschrift 101, 248–271 (1942)Google Scholar
  138. 138.
    Labrosse, M.R., Beller, C.J., Mesana, T., Veinot, J.P.: Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J. Biomech. 42, 996–1004 (2009)Google Scholar
  139. 139.
    Lanchares, E., Calvo, B., Cristobal, J.A., Doblaré, M.: Finite element simulation of arcuates for astigmatism correction. J. Biomech. 41, 797–805 (2008)Google Scholar
  140. 140.
    Lanir, Y.: Structure-strength relations in mammalian tendon. Biophys. J. 24, 541–554 (1978)Google Scholar
  141. 141.
    Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissues. J. Biomech. 12, 423–436 (1979)Google Scholar
  142. 142.
    Lapeer, R.J., Gasson, P.D., Karri, V.: Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Prog. Biophys. Mol. Biol. 103, 208–216 (2010)Google Scholar
  143. 143.
    Li, W.G., Hill, N.A., Ogden, R.W., Smythe, A., Majeed, A.W., Bird, N., Luo, X.Y.: Anisotropic behaviour of human gallbladder walls. J. Mech. Behav. Biomed. Mater. 20, 363–375 (2013)Google Scholar
  144. 144.
    Li, Z., Alonso, J.E., Kim, J.-E., Davidson, J., Etheridge, B.S., Eberhardt, A.W.: Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Ann. Biomed. Eng. 34, 1452–1462 (2006)Google Scholar
  145. 145.
    Limbert, G., Taylor, M.: On the constitutive modeling of biological soft connective tissues. A general theoretical framework and explicit forms of the tensors of elasticity for strongly anisotropic continuum fiber-reinforced composites at finite strain. Int. J. Solids Struct. 39, 2343–2358 (2002)Google Scholar
  146. 146.
    Limbert, G., Middleton, J.: A transversely isotropic viscohyperelastic material application to the modeling of biolgical soft connective tissues. Int. J. Solids Struct. 41, 4237–4260 (2004)Google Scholar
  147. 147.
    Limbert, G., Middleton, J.: A constitutive model of the posterior cruciate ligament. Med. Eng. Phys. 28, 99–113 (2006)Google Scholar
  148. 148.
    Lin, D.H.S., Yin, F.C.P.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120, 504–517 (1998)Google Scholar
  149. 149.
    Lister, K., Gao, Z., Desai, J.P.: Development of in vivo constitutive models for liver: application to surgical simulation. Ann. Biomed. Eng. 39, 1060–1073 (2011)Google Scholar
  150. 150.
    Lopez-Pamies, O., Idiart, M.I.: Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory. J. Eng. Math. 68, 57–83 (2010)Google Scholar
  151. 151.
    Lu, J., Zhang, L.: Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42, 6015–6031 (2005)Google Scholar
  152. 152.
    Lu, J., Zhou, X., Raghavan, M.L.: Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int. J. Numer. Methods Eng. 69, 1239–1261 (2007)Google Scholar
  153. 153.
    Lurding, D., Basar, Y., Hanskotter, U.: Application of transversely isotropic materials to multi-layer shell elements undergoing finite rotations and large strains. Int. J. Solids Struct. 38, 9493–9503 (2001)Google Scholar
  154. 154.
    Maher, E., Creane, A., Lally, C., Kelly, D.J.: An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. J. Mech. Behav. Biomed. 12, 9–19 (2012)Google Scholar
  155. 155.
    Malvè, M., Pérez del Palomar, A., Trabelsi, O., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Modeling of the fluid structure interaction of a human trachea under different ventilation conditions. Int. Commun. Heat Mass Transf. 38, 10–15 (2011)Google Scholar
  156. 156.
    Marieb, E., Hoehn, K.: Human Anatomy & Physiology. Pearson Education, Upper Saddle River (2010)Google Scholar
  157. 157.
    Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)Google Scholar
  158. 158.
    Martins, J.A.C., Pires, E.B., Salvador, R., Dinis, P.B.: A numerical model of passive and active behaviour of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151, 419–433 (1998)Google Scholar
  159. 159.
    Masson, I., Boutouyrie, P., Laurent, S., Humphrey, J.D., Zidi, M.: Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 41, 2618–2627 (2008)Google Scholar
  160. 160.
    Masson, I., Fassot, C., Zidi, M.: Finite dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed tube. Applications to in vivo arteries. Eur. J. Mech. A, Solids 29, 523–529 (2010)Google Scholar
  161. 161.
    May-Newman, K., Yin, F.C.P.: A constitutive law for mitral valve tissue. Am. J. Physiol. 269, 1319–1327 (1998)Google Scholar
  162. 162.
    May-Newman, K., Lam, C., Yin, F.C.P.: A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131, 1–7 (2009)Google Scholar
  163. 163.
    Menzel, A., Steinmann, P.: On the comparison of two strategies to formulate orthotropic hyperelasticity. J. Elast. 62, 171–201 (2001)Google Scholar
  164. 164.
    Menzel, A., Waffenschmidt, T.: A microsphere-based remodelling formulation for anisotropic biological tissues. Philos. Trans. R. Soc. A 367, 3499–3523 (2009)Google Scholar
  165. 165.
    Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I. Mechanical equilibrium. J. Elast. 62, 119–144 (2001)Google Scholar
  166. 166.
    Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elast. 62, 145–170 (2001)Google Scholar
  167. 167.
    Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54, 525–552 (2002)Google Scholar
  168. 168.
    Merodio, J., Ogden, R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 30, 4707–4727 (2003)Google Scholar
  169. 169.
    Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005)Google Scholar
  170. 170.
    Merodio, J., Ogden, R.W.: On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mech. Res. Commun. 32, 290–299 (2005)Google Scholar
  171. 171.
    Merodio, J.: A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid. Arch. Mech. 58, 293–303 (2006)Google Scholar
  172. 172.
    Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)Google Scholar
  173. 173.
    Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12, 291–314 (2005)Google Scholar
  174. 174.
    Murphy, J.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013)Google Scholar
  175. 175.
    Nash, M.P., Hunter, P.J.: Computational mechanics of the heart: from tissue structure to ventricular function. J. Elast. 61, 113–141 (2000)Google Scholar
  176. 176.
    Natali, A.N., Pavan, P.G., Carniel, E.L., Dorow, C.: A transversally isotropic elasto-damage constitutive model for the periodontal ligament. Comput. Methods Biomech. Biomed. Eng. 6, 329–336 (2003)Google Scholar
  177. 177.
    Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009)Google Scholar
  178. 178.
    Nerurkar, N.L., Mauck, R.L., Elliott, D.M.: Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering. Biomech. Model. Mechanobiol. 10, 973–984 (2011)Google Scholar
  179. 179.
    Nguyen, T.D., Boyce, B.L.: An inverse finite element method for determining the anisotropic properties of the cornea. Biomech. Model. Mechanobiol. 10, 323–337 (2011)Google Scholar
  180. 180.
    Nicholson, D.W.: Tangent modulus matrix for finite element analysis of hyperelastic materials. Acta Mech. 112, 187–201 (1995)Google Scholar
  181. 181.
    Nierenberger, M., Rémond, Y., Ahzi, S.: A new multiscale model for the mechanical behavior of vein walls. J. Mech. Behav. Biomed. Mater. 23, 32–43 (2013)Google Scholar
  182. 182.
    Ning, X., Zhu, Q., Lanir, Y., Margulies, S.S.: A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128, 925–933 (2006)Google Scholar
  183. 183.
    O’Connell, G.D., Guerin, H.L., Elliott, D.M.: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131, 111007 (2009)Google Scholar
  184. 184.
    Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubber like solids. Proc. R. Soc. Lond. A 326, 565–584 (1972)Google Scholar
  185. 185.
    Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)Google Scholar
  186. 186.
    Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics of Soft Tissue in Cardiovascular System. CISM Courses and Lecture, vol. 441. Springer, New York (2003)Google Scholar
  187. 187.
    Ogden, R.W., Saccomandi, G.: Introducing mesoscopic information into constitutive equations for arterial walls. Biomech. Model. Mechanobiol. 6, 333–344 (2007)Google Scholar
  188. 188.
    Paetsch, C., Trimmer, B.A., Dorfmann, A.: A constitutive model for active–passive transition of muscle fibers. Int. J. Non-Linear Mech. 47, 377–387 (2012)Google Scholar
  189. 189.
    Paetsch, C., Dorfmann, A.: Non-linear modeling of active biohybrid materials. Int. J. Non-Linear Mech. 56, 105–114 (2013)Google Scholar
  190. 190.
    Pandolfi, A., Maganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5, 237–246 (2006)Google Scholar
  191. 191.
    Pandolfi, A., Vasta, M.: Fiber distributed hyperelastic modeling of biological tissues. Mech. Mater. 44, 151–162 (2012)Google Scholar
  192. 192.
    Papaharilaou, Y., Ekaterinaris, J.A., Manousakid, E., Katsamouris, A.N.: A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40, 367–377 (2007)Google Scholar
  193. 193.
    Parente, M.P.L., Natal Jorge, R.M., Mascarenhas, T., Fernandes, A.A., Martins, J.A.C.: The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J. Biomech. 42, 1301–1306 (2009)Google Scholar
  194. 194.
    Park, H.C., Youn, S.K.: Finite element analysis and constitutive modelling of anisotropic nonlinear hyperelastic bodies with convected frames. Comput. Methods Appl. Mech. Eng. 151, 605–618 (1998)Google Scholar
  195. 195.
    Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009)Google Scholar
  196. 196.
    Peña, E., Calvo, B., Martinez, M.A., Martins, P., Mascarenhas, T., Jorge, R.M.N., Ferreira, A., Doblaré, M.: Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue. Biomech. Model. Mechanobiol. 9, 35–44 (2010)Google Scholar
  197. 197.
    Peña, E.: Prediction of the softening and damage effects with permanent set in fibrous biological materials. J. Mech. Phys. Solids 59, 1808–1822 (2011)Google Scholar
  198. 198.
    Peña, E., Martins, P., Mascarenhasd, T., Natal Jorge, R.M., Ferreira, A., Doblaré, M., Calvo, B.: Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. Mater. 4, 275–283 (2011)Google Scholar
  199. 199.
    Peng, X.Q., Guo, Z.Y., Roman, B.: An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. J. Appl. Mech. 73, 815–824 (2006)Google Scholar
  200. 200.
    Peng, X., Guo, Z., Du, T., Yu, W.R.: A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites, Part B, Eng. 52, 275–281 (2013)Google Scholar
  201. 201.
    Pinsky, P.M., van der Heide, D., Chernyak, D.: Computational modeling of mechanical anisotropy in the cornea and sclera. J. Cataract Refract. Surg. 31, 136–145 (2005)Google Scholar
  202. 202.
    Prevost, T.P., Balakrishnan, A., Suresh, S., Socrate, S.: Biomechanics of brain tissue. Acta Biomater. 7, 83–95 (2011)Google Scholar
  203. 203.
    Prot, V., Haaverstad, R., Skallerud, B.: Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech. Model. Mechanobiol. 8, 43–55 (2009)Google Scholar
  204. 204.
    Przybylo, P.A., Arruda, E.M.: Experimental investigations and numerical modeling of incompressible elastomersduring non-homogeneous deformations. Rubber Chem. Technol. 71, 730–749 (1998)Google Scholar
  205. 205.
    Qian, M., Wells, D.M., Jones, A., Becker, A.: Finite element modelling of cell wall properties for onion epidermis using a fibre-reinforced hyperelastic model. J. Struct. Biol. 172, 300–304 (2010)Google Scholar
  206. 206.
    Qiu, G.Y., Pence, T.: Remarks on the behaviour of a simple directionnally reinforced incompressible non linearly elastic solids. J. Elast. 49, 1–30 (1997)Google Scholar
  207. 207.
    Quapp, K.M., Weiss, J.A.: Material characterization of human medical collaterial ligament. J. Biomech. Eng. 124, 757–763 (1998)Google Scholar
  208. 208.
    Quaglini, V., Vena, P., Contro, R.: A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues. Biomech. Model. Mechanobiol. 3, 85–97 (2004)Google Scholar
  209. 209.
    Raghavan, M., Webster, M.W., Vorp, D.A.: Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24, 573–582 (1996)Google Scholar
  210. 210.
    Raghavan, M., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482 (2000)Google Scholar
  211. 211.
    Raghupathy, R., Barocas, V.H.: A closed-form structural model of planar fibrous tissue mechanics. J. Biomech. 42, 1424–1428 (2009)Google Scholar
  212. 212.
    Rajagopal, K.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)Google Scholar
  213. 213.
    Rajagopal, K., Bridges, C., Rajagopal, K.R.: Towards an understanding of the mechanics underlying aortic dissection. Biomech. Model. Mechanobiol. 6, 345–359 (2007)Google Scholar
  214. 214.
    Rebouah, M., Chagnon, G., Favier, D.: Development and modeling of filled silicone architectured membranes. Meccanica (2014). doi:10.1007/s11012-014-0065-0 Google Scholar
  215. 215.
    Reese, S., Raible, T., Wriggers, P.: Finite element modelling of orthotropic material behaviour in pneumatic membranes. Int. J. Solids Struct. 38, 9525–9544 (2001)Google Scholar
  216. 216.
    Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997)Google Scholar
  217. 217.
    Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials—VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. A 243, 251–288 (1951)Google Scholar
  218. 218.
    Rodriguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006)Google Scholar
  219. 219.
    Rodriguez, J.F., Ruiz, C., Doblaré, M., Holzapfel, G.A.: Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130(2), 021023 (2008)Google Scholar
  220. 220.
    Rohrle, O., Pullan, A.J.: Three-dimensional finite element modelling of muscle forces during mastication. J. Biomech. 40, 3363–3372 (2007)Google Scholar
  221. 221.
    Rubin, M.B., Bodner, S.R.: A three-dimensional nonlinear model for dissipative response of soft tissue. Int. J. Solids Struct. 39, 5081–5099 (2002)Google Scholar
  222. 222.
    Ruter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Eng. 190, 519–541 (2000)Google Scholar
  223. 223.
    Sacks, M.S., Gloeckner, D.: Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J. Biomed. Mater. Res. 46, 1–10 (1999)Google Scholar
  224. 224.
    Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61, 199–246 (2000)Google Scholar
  225. 225.
    Sacks, M.S.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collageneous tissues. J. Biomech. Eng. 125, 280–287 (2003)Google Scholar
  226. 226.
    Samani, A., Plewes, D.: A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49, 4395–4405 (2004)Google Scholar
  227. 227.
    Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A, Solids 27, 28–39 (2008)Google Scholar
  228. 228.
    Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40, 401–445 (2003)Google Scholar
  229. 229.
    Schröder, J., Neff, P.: On the construction of polyconvex transversely isotropic free energy functions. In: Miehe, C. (ed.) Proceedings of the IUTAM Symposium on Computational Mechanicsof Solids Materials at Large Strains, pp. 171–180. Kluwer Academic, Norwell (2003)Google Scholar
  230. 230.
    Schröder, J., Neff, P., Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42, 4352–4371 (2005)Google Scholar
  231. 231.
    Schröder, J., Neff, P., Ebbing, V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56, 3486–3506 (2008)Google Scholar
  232. 232.
    Schröder, J., Neff, P.: Poly-, quasi- and rank-one convexity in applied mechanics. In: CISM International Centre for Mechanical Sciences, vol. 516 (2010)Google Scholar
  233. 233.
    Schulze-Bauer, C.A.J., Holzapfel, G.A.: Determination of constitutive equations for human arteries from clinicaldata. J. Biomech. 36, 165–169 (2003)Google Scholar
  234. 234.
    Schwenninger, D., Schumann, S., Guttmann, J.: In vivo characterization of mechanical tissue properties of internal organs using endoscopic microscopy and inverse finite element analysis. J. Biomech. 44, 487–493 (2011)Google Scholar
  235. 235.
    Shin, T.J., Vito, R.P., Johnson, L.W., McCarey, B.E.: The distribution of strain in the human cornea. J. Biomech. 30, 497–503 (1997)Google Scholar
  236. 236.
    Simpson, H.C., Spector, S.J.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84, 55–68 (1983)Google Scholar
  237. 237.
    Singh, F., Katiyar, V.K., Singh, B.P.: A new strain energy function to characterize apple and potato tissues. J. Food Eng. 118(2), 178–187 (2013)Google Scholar
  238. 238.
    Smith, G.F., Rivlin, R.S.: The anisotropic tensors. Q. Appl. Math. 15, 309–314 (1957)Google Scholar
  239. 239.
    Smith, G.F., Rivlin, R.S.: The strain energy function for anisotropic elastic materials. Trans. Am. Math. Soc. 88, 175–193 (1958)Google Scholar
  240. 240.
    Soldatos, K.P.: On loss of ellipticity in second-gradient hyper-elasticity of fibre-reinforced materials. Int. J. Non-Linear Mech. 47, 117–127 (2012)Google Scholar
  241. 241.
    Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics. Academic Press, San Diego (1971)Google Scholar
  242. 242.
    Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre–Reinforced Composites. Springer, New York (1984)Google Scholar
  243. 243.
    Spencer, A.J.M.: Isotropic polynomial invariants and tensor functions. In: CISM Courses and Lectures, vol. 292, pp. 141–169. Springer, Berlin (1987)Google Scholar
  244. 244.
    Steigmann, D.: On isotropic, frame-invariant, polyconvex strain-energy functions. Q. J. Mech. Appl. Math. 56, 483–491 (2003)Google Scholar
  245. 245.
    Steinmann, D.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8, 496–506 (2003)Google Scholar
  246. 246.
    Stewart, M.L., Smith, L.M., Hall, N.: A numerical investigation of breast compression: a computer-aided design approach for prescribing boundary conditions. IEEE Trans. Biomed. Eng. 58(10), 2876–2884 (2011)Google Scholar
  247. 247.
    Sun, W., Sacks, M.S.: Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4, 190–199 (2005)Google Scholar
  248. 248.
    Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124, 78–84 (2002)Google Scholar
  249. 249.
    Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17 (1987)Google Scholar
  250. 250.
    Tang, C.Y., Zhang, G., Tsui, C.P.: A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J. Biomech. 42, 865–872 (2009)Google Scholar
  251. 251.
    Tang, D., Yang, C., Kobayashi, S., Zheng, J., Woodard, P.K., Teng, Z., Billiar, K., Bach, K., Ku, R.: 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng. 131, 061010 (2009)Google Scholar
  252. 252.
    Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. J. Biomech. 9, 649–657 (1976)Google Scholar
  253. 253.
    Toungara, M., Chagnon, G., Geindreau, C.: Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility. J. Mech. Med. Biol. 12, 1250005 (2012)Google Scholar
  254. 254.
    Trabelsi, O., Pérez del Palomar, A., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Med. Eng. Phys. 32, 76–82 (2010)Google Scholar
  255. 255.
    Treloar, L.R.G.: The elasticity of a network of long chains molecules 1. Trans. Faraday Soc. 39, 36–41 (1943)Google Scholar
  256. 256.
    Treloar, L.R.G.: The elasticity of a network of long chains molecules 2. Trans. Faraday Soc. 39, 241–246 (1943)Google Scholar
  257. 257.
    Triantafyllidis, N., Abeyaratne, R.C.: Instability of a finitely deformed fiber-reinforced elastic material. J. Appl. Mech. 50, 149–156 (1983)Google Scholar
  258. 258.
    Vahapoglu, V., Karadeniz, S.: Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003). Rubber Chem. Technol. 79, 489–499 (2006)Google Scholar
  259. 259.
    Vaishnav, R.N., Young, J.T., Patel, D.J.: Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32, 577–583 (1973)Google Scholar
  260. 260.
    Valencia, A., Baeza, F.: Numerical simulation of fluid–structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model. Int. Commun. Heat Mass Transf. 36, 137–142 (2009)Google Scholar
  261. 261.
    van Dam, E.A., Dams, S.D., Peters, G.W.M., Rutten, M.C.M., Schurink, G.W.H., Buth, J., van de Vosse, F.N.: Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model. Mechanobiol. 7, 127–137 (2008)Google Scholar
  262. 262.
    Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)Google Scholar
  263. 263.
    Vasta, M., Pandolfi, A., Gizzi, A.: A fiber distributed model of biological tissues. Proc. IUTAM 6, 79–86 (2013)Google Scholar
  264. 264.
    Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5, 53–61 (2006)Google Scholar
  265. 265.
    Vito, R.P., Dixon, S.A.: Blood vessel constitutive models 1995–2002. Annu. Rev. Biomed. Eng. 5, 413–439 (2003)Google Scholar
  266. 266.
    Volokh, K.Y., Vorp, D.A.: A model of growth and rupture of abdominal aortic aneurysm. J. Biomech. 41, 1015–1021 (2008)Google Scholar
  267. 267.
    Walton, J.R., Wilber, J.P.: Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int. J. Non-Linear Mech. 38, 441–455 (2003)Google Scholar
  268. 268.
    Weiss, J.A., Maker, B.N., Govindjee, S.: Finite implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)Google Scholar
  269. 269.
    Wilber, J.P., Walton, J.R.: The convexity properties of a class of constitutive models for biological soft tissues. Math. Mech. Solids 7, 217–235 (2002)Google Scholar
  270. 270.
    Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40, 271–279 (2005)Google Scholar
  271. 271.
    Yosibash, Z., Priel, E.: p-fems for hyperelastic anisotropic nearly incompressible materials under finite deformations with applications to arteries simulation. Int. J. Numer. Methods Eng. 88, 1152–1174 (2011)Google Scholar
  272. 272.
    Yu, J., Zeng, Y., Zhao, J., Liao, D., Gregersen, H.: Quantitative analysis of collagen fiber angle in the submucosa of small intestine. Comput. Biol. Med. 34(34), 539–550 (2004)Google Scholar
  273. 273.
    Zee, L., Sternberg, E.: Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids. Arch. Ration. Mech. Anal. 83, 53–90 (1983)Google Scholar
  274. 274.
    Zhang, J.P., Rajagopal, K.R.: Some inhomogeneous motions and deformations within the context of a non-linear elastic solid. Int. J. Eng. Sci. 30, 919–938 (1992)Google Scholar
  275. 275.
    Zhang, Y., Dunn, M.L., Drexler, E.S., McCowan, C.N., Slifka, A.J., Ivy, D.D., Shandas, R.: A microstructural hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Ann. Biomed. Eng. 33, 1042–1052 (2005)Google Scholar
  276. 276.
    Zhao, X., Raghavan, M.L., Lu, J.: Identifying heterogeneous anisotropic properties in cerebral aneurysms: a point wise approach. Biomech. Model. Mechanobiol. 10, 177–189 (2011)Google Scholar
  277. 277.
    Zulliger, M.A., Fridez, P., Hayashi, K., Stergiopulos, N.: A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37, 989–1000 (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Université de Grenoble Alpes/CNRS/TIMC-IMAG UMR 5525GrenobleFrance

Personalised recommendations