Skip to main content
Log in

The Anti-Plane Shear Problem in Nonlinear Elasticity Revisited

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A classical problem in the framework of nonlinear elasticity theory is the characterization of the materials that may sustain a pure state of anti-plane shear in the absence of body forces. This problem has been solved by Knowles and by Hill in the framework of isotropic and incompressible elasticity in the seventies. Here we provide a simpler and shorter proof of these classical results. Moreover, we extend these results to nonlinear elastodynamics and we provide some new special solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The existence of such multipliers is a classical result in algebraic and differential geometry. See exercise 2.33 in the first edition of [18]. (The same exercise is renumbered 2.35 in the second edition of the book).

References

  1. Adkins, J.E.: Some generalizations of the shear problem for isotropic incompressible materials. Proc. Camb. Philos. Soc. 50, 334–345 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)

    Book  MATH  Google Scholar 

  3. Carroll, M.M.: Some results on finite amplitude elastic waves. Acta Mech. 3, 167–181 (1967)

    Article  Google Scholar 

  4. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, New York (1953) (volume 1 and 2)

    Google Scholar 

  5. Destrade, M., Ogden, R.W.: On the third- and fourth-order constants of incompressible isotropic elasticity. J. Acoust. Soc. Am. 128, 3334–3343 (2010)

    Article  ADS  Google Scholar 

  6. Ericksen, J.L.: Overdetermination of the speed in rectilinear motion of non-Newtonian fluids. Q. Appl. Math. 14, 318–321 (1956)

    MathSciNet  MATH  Google Scholar 

  7. Fosdick, R.L., Serrin, J.: Rectilinear steady flow of simple fluids. Proc. R. Soc. Lond. A 332, 331–333 (1973)

    MathSciNet  ADS  Google Scholar 

  8. Fosdick, R.L., Kao, B.G.: Transverse deformations associated with rectilinear shear in elastic solids. J. Elast. 8, 117–142 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goursat, E.: Équations aux Dérivées Partielle du Second Ordre. Hermann, Paris (1896)

    Google Scholar 

  10. Hayes, M.A., Saccomandi, G.: Antiplane shear motions for viscoelastic Mooney-Rivlin materials. Q. J. Mech. Appl. Math. 57, 379–392 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hill, J.M.: Generalized shear deformations for isotropic incompressible hyperelastic materials. J. Aust. Math. Soc. Ser. B, Appl. Math 20, 129–141 (1978)

    Article  Google Scholar 

  12. Horgan, C.O.: Anti-plane shear deformations in linear and nonlinear solid mechanics. SIAM Rev. 37, 53–81 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Horgan, C.O., Saccomandi, G.: Anti-plane shear deformations for non-Gaussian isotropic, incompressible hyperelastic materials. Proc. R. Soc. Lond. A 457, 1999–2017 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Huang, Y.N., Rajagopal, K.R.: On necessary and sufficient conditions for turbulent secondary flows in a straight tube. Math. Models Methods Appl. Sci. 5, 111–123 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knowles, J.K.: On finite anti-plane shear for incompressible elastic materials. J. Aust. Math. Soc. Ser. B, Appl. Math 19, 400–415 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Knowles, J.K.: Universal states of finite anti-plane shear: Ericksen’s problem in miniature. Am. Math. Mon. 86, 109–113 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mayne, G.: Geometrical method in non-Newtonian fluid mechanics. Q. J. Mech. Appl. Math. 42, 239–247 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986) (first edition) (1993) (second edition)

    Book  MATH  Google Scholar 

  19. Pucci, E., Saccomandi, G.: On the weak symmetry groups of partial differential equations. J. Math. Anal. Appl. 163, 588–598 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Seiler, W.: Involution—The Formal Theory of Differential Equations and Its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2010)

    MATH  Google Scholar 

  21. Tsai, H., Rosakis, P.: On anisotropic compressible materials that can sustain elastodynamic anti-plane shear. J. Elast. 35, 213–222 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research is partially supported by PRIN-2009 project Matematica e meccanica dei sistemi biologici e dei tessuti molli and GNFM of Italian INDAM. We thank you Michel Destrade, Roger Fosdick, Jeremiah Murphy, Ray Ogden and two anonymous referees for providing constructive comments and help in improving the contents of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Saccomandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucci, E., Saccomandi, G. The Anti-Plane Shear Problem in Nonlinear Elasticity Revisited. J Elast 113, 167–177 (2013). https://doi.org/10.1007/s10659-012-9416-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9416-z

Keywords

Mathematics Subject Classification (2010)

Navigation