Skip to main content

Advertisement

Log in

Variational Convergences of Dual Energy Functionals for Elastic Materials with a ε-Thin Strong Inclusion

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We give a new derivation, based on the complementary energy formulation, of a simplified model for a multi-structure made up of two anisotropic hyper-elastic bodies connected by a thin strong material layer. The model is obtained by identifying the Mosco-limit of the stored complementary energy functional when the thickness is of order ε and the stiffness of order 1/ε where ε is a positive real adimensional parameter. In order to prove the existence of the displacement associated with the stress we use a suitable weak version of the Saint-Venant compatibility condition also known as Donati’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acerbi, E., Buttazzo, G., Percivale, P.: Thin inclusions in linear elasticity: a variational approach. J. Reine Angew. Math. 386, 99–115 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Attouch, H.: Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitman, London (1985)

    Google Scholar 

  3. Aze, D.: Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des méthodes d’épi-convergence. Ric. Mat. 35, 125–159 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Benvenuto, E.: An Introduction to the History of Structural Mechanics, Part II: Vaulted Structures and Elastic Systems. Springer, Berlin (1991)

    MATH  Google Scholar 

  5. Bessoud, A.-L., Krasucki, F., Michaille, G.: Multi-materials with strong interface: variational modelings. Asymptot. Anal. 61, 1–19 (2008)

    MathSciNet  Google Scholar 

  6. Brezis, H., Caffarelli, L.A., Friedman, A.: Reinforcement problems for elliptic equations and variational inequalities. Ann. Mat. Pura Appl., 123(4), 219–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caillerie, D.: The effect of a thin inclusion of high rigidity in an elastic body. Math. Methods Appl. Sci. 2, 251–270 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Ciarlet, P.G., Ciarlet, P.Jr., Iosifescu, O., Sauter, S., Zou, J.: Lagrange multipliers in intrinsic elasticity. Math. Models Methods Appl. Sci. 21, 651–666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Méc. 18, 315–344 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G., Le Dret, H., Nzengwa, R.: Junctions between three-dimensional and two-dimensional linearly elastic structures. J. Math. Pures Appl. 68, 261–295 (1989)

    MathSciNet  MATH  Google Scholar 

  11. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 58, 842–850 (1975)

    MATH  Google Scholar 

  12. Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972)

    MATH  Google Scholar 

  13. Ekeland, I., Temam, R.: Analyse Convexe et Problèmes Variationnels. Dunod/Gauthier-Villars, Paris (1974)

    MATH  Google Scholar 

  14. Geymonat, G., Krasucki, F.: A limit problem of a soft thin joint. In: Marcellini, P., Talenti, G., Vesentini, E. (eds.) Partial Differential Equations and Applications, pp. 165–173. Dekker, New York (1996)

    Google Scholar 

  15. Geymonat, G., Krasucki, F.: Some remarks on the compatibility conditions in elasticity. Accad. Naz. Sci. XL 123, 175–182 (2005)

    MathSciNet  Google Scholar 

  16. Geymonat, G., Krasucki, F., Lenci, S.: Mathematical analysis of a bounded joint with a soft thin adhesive. Math. Mech. Solids 4, 201–225 (1999)

    Article  MathSciNet  Google Scholar 

  17. Geymonat, G., Suquet, P.: Functional spaces for Norton-Hoff materials. Math. Methods Appl. Sci. 8, 206–222 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Gurtin, M.: In: Flügge, S., Truesdell, C. (eds.) The Linear Theory of Elasticity. Handbuch der Physik, vol. VI a/2, pp. 1–295. Springer, Berlin (1972)

    Google Scholar 

  19. Le Dret, H.: Problemes Variationnels dans les Multi-Domaines. Masson, Paris (1991)

    MATH  Google Scholar 

  20. Licht, C., Michaille, G.: A modelling of elastic adhesive bonding joints. Adv. Math. Sci. Appl. 7, 711–740 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mosco, U.: On the continuity of Young-Fenchel transformation. J. Math. Anal. Appl. 35, 518–535 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pham Huy, H., Sanchez-Palencia, E.: Phénomène de transmission à travers des couches minces de conductivité élevée. J. Math. Anal. Appl. 47, 284–309 (1974)

    Article  MathSciNet  Google Scholar 

  24. Suquet, P.: Discontinuities and plasticity. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Non-Smooth Mechanics and Applications. CISM Courses and Lectures, pp. 280–340. Springer, Vienna (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Krasucki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessoud, AL., Geymonat, G., Krasucki, F. et al. Variational Convergences of Dual Energy Functionals for Elastic Materials with a ε-Thin Strong Inclusion. J Elast 109, 51–65 (2012). https://doi.org/10.1007/s10659-011-9368-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9368-8

Keywords

Mathematics Subject Classification (2000)

Navigation