Journal of Elasticity

, Volume 108, Issue 2, pp 225–228 | Cite as

A New Interpretation of Configurational Forces

Research Note


In a recent paper (Gupta and Markenscoff in C. R., Méc. 336:126–131, 2008) we interpreted configurational forces as necessary and sufficient dissipative mechanisms such that the corresponding Euler-Lagrange equations are satisfied. We now extend this argument for a dynamic elastic medium, and show that the energy flux obtained from the dynamic J integral ensures that the equations of motion hold throughout the body.


Configurational force Dynamic J integral Inhomogeneity 

Mathematics Subject Classification (2000)

74B99 74E05 74R99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball, J.M.: Minimizers and the Euler-Lagrange equations. In: Ciarlet, P.G., Roseau, M. (eds.) Trends and Applications of Pure Mathematics to Mechanics. Lecture Notes in Physics, vol. 195. Springer, Berlin (1984) CrossRefGoogle Scholar
  2. 2.
    Ball, J.M., Mizel, V.J.: Singular minimizers for regular one-dimensional problems in the calculus of variations. Bull. Am. Math. Soc. 11, 143–146 (1984) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Eshelby, J.D.: Energy relations and the energy–momentum tensor in continuum mechanics. In: Kanninen, M., Adler, W., Rosenfeld, A., Jaffe, R. (eds.) Inelastic Behavior of Solids, pp. 77–115. McGraw-Hill, New York (1970). Also in Collected Works of J.D. Eshelby, X. Markenscoff, A. Gupta (eds.), pp. 603–641, Springer, Berlin (2006) Google Scholar
  4. 4.
    Fletcher, D.C.: Conservation laws in linear elastodynamics. Arch. Ration. Mech. Anal. 60, 329–353 (1976) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1998) Google Scholar
  6. 6.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000) MATHGoogle Scholar
  7. 7.
    Gupta, A., Markenscoff, X.: Configurational forces as dissipative mechanisms: a revisit. C. R., Méc. 336, 126–131 (2008) MATHCrossRefGoogle Scholar
  8. 8.
    Kienzler, R., Herrmann, G.: Mechanics in Material Space. Springer, Berlin (2000) MATHCrossRefGoogle Scholar
  9. 9.
    Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993) MATHGoogle Scholar
  10. 10.
    Noether, E.: Invariante variationsprobleme (invariant variation problems). In: Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 235–257 (1918). English translation by M.A. Tavel in Transp. Theory Stat. Phys., 1, 183–207 (1971) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations